• walking gait;
  • knee biomechanics;
  • load distribution;
  • cartilage degeneration;
  • osteoarthritis


The purpose of this study was to evaluate shoe sole material stiffness changes and angle changes that are intended to reduce the peak knee adduction moment during walking. Fourteen physically active adults were tested wearing their personal shoes (control) and five intervention pairs, two with stiffness variations, two with angle variations, and a placebo shoe. The intervention shoes were evaluated based on how much they reduced the peak knee adduction moment compared to the control shoe. An ANOVA test was used to detect differences between interventions. Linear regression analysis was used to determine a relationship between the magnitude of the knee adduction moment prior to intervention and the effectiveness of the intervention in reducing the peak knee adduction moment. Peak knee adduction moments were reduced for the altered stiffness and altered angle shoes (p < 0.010), but not for the placebo shoe (p = 0.363). Additionally, linear regression analysis showed that subjects with higher knee adduction moments prior to intervention had larger reductions in the peak knee adduction moment (p < 0.010). These results demonstrate that shoe sole stiffness and angle interventions can be used to reduce the peak knee adduction moment and that subjects with initially higher peak knee adduction moments have higher reductions in their peak knee adduction moments. © 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25:540–546, 2007