SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Parker MJ, Handoll HH. 2010. Gamma and other cephalocondylic intramedullary nails versus extramedullary implants for extracapsular hip fractures in adults. Cochrane Database Syst Rev CD000093. doi: 10.1002/14651858.CD000093.pub5.
  • 2
    Barton TM, Gleeson R, Topliss C, et al. 2010. A comparison of the long gamma nail with the sliding hip screw for the treatment of AO/OTA 31-A2 fractures of the proximal part of the femur: a prospective randomized trial. J Bone Joint Surg Am 92:792798.
  • 3
    Born CT, Karich B, Bauer C, et al. 2011. Hip screw migration testing: first results for hip screws and helical blades utilizing a new oscillating test method. J Orthop Res 29:760766.
  • 4
    Sommers MB, Fitzpatrick DC, Madey SM, et al. 2007. A surrogate long-bone model with osteoporotic material properties for biomechanical testing of fracture implants. J Biomech 40:32973304.
  • 5
    Bojan AJ, Beimel C, Speitling A, et al. 2010. 3066 consecutive Gamma Nails. 12 years experience at a single centre. BMC Musculoskelet Disord 11:133.
  • 6
    Bergmann G, Deuretzbacher G, Heller M, et al. 2001. Hip contact forces and gait patterns from routine activities. J Biomech 34:859871.
  • 7
    Eberle S, Gerber C, von Oldenburg G, et al. 2009. Type of hip fracture determines load share in intramedullary osteosynthesis. Clin Orthop Relat Res 467:19721980.
  • 8
    Eberle S, Gerber C, von Oldenburg G, et al. 2010. A biomechanical evaluation of orthopaedic implants for hip fractures by finite element analysis and in-vitro tests. Proc Inst Mech Eng H 224:11411152.
  • 9
    Sowmianarayanan S, Chandrasekaran A, Kumar RK. 2008. Finite element analysis of a subtrochanteric fractured femur with dynamic hip screw, dynamic condylar screw, and proximal femur nail implants—a comparative study. Proc Inst Mech Eng H 222:117127.
  • 10
    Hsu JT, Chang CH, Huang HL, et al. 2007. The number of screws, bone quality, and friction coefficient affect acetabular cup stability. Med Eng Phys 29:10891095.
  • 11
    Goffin JM, Pankaj P, Simpson AH. 2013. The importance of lag screw position for the stabilization of trochanteric fractures with a sliding hip screw: a subject-specific finite element study. J Orthop Res 31:596600.
  • 12
    Goffin JM, Pankaj P, Simpson AHRW, et al. 2013. Does bone compaction around the helical blade of a proximal femoral nail anti-rotation (PFNA) decrease the risk of cut-out? A subject-specific computational study. Bone Joint Res 2:7983.
  • 13
    Mercer C, He MY, Wang R, et al. 2006. Mechanisms governing the inelastic deformation of cortical bone and application to trabecular bone. Acta Biomater 2:5968.
  • 14
    Heiney J, Battula S, Njus G, et al. 2008. Biomechanical comparison of three second-generation reconstruction nails in an unstable subtrochanteric femur fracture model. Proc Inst Mech Eng H 222:959966.
  • 15
    Haynes RC, Poll RG, Miles AW, et al. 1997. Failure of femoral head fixation: a cadaveric analysis of lag screw cut-out with the gamma locking nail and AO dynamic hip screw. Injury 28:337341.
  • 16
    Haidukewych GJ. 2009. Intertrochanteric fractures: ten tips to improve results. J Bone Joint Surg Am 91:712719.
  • 17
    Schileo E, Taddei F, Cristofolini L, et al. 2008. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. J Biomech 41:356367.
  • 18
    Ramos A, Simoes JA. 2006. Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur. Med Eng Phys 28:916924.
  • 19
    Heller MO, Bergmann G, Kassi JP, et al. 2005. Determination of muscle loading at the hip joint for use in pre-clinical testing. J Biomech 38:11551163.
  • 20
    Hsueh KK, Fang CK, Chen CM, et al. 2010. Risk factors in cutout of sliding hip screw in intertrochanteric fractures: an evaluation of 937 patients. Int Orthop 34:12731276.
  • 21
    Patel PS, Shepherd DE, Hukins DW. 2008. Compressive properties of commercially available polyurethane foams as mechanical models for osteoporotic human cancellous bone. BMC Musculoskelet Disord 9:137.
  • 22
    O'Neill F, Condon F, McGloughlin T, et al. 2012. Validity of synthetic bone as a substitute for osteoporotic cadaveric femoral heads in mechanical testing: a biomechanical study. Bone Joint Res 1:5055.
  • 23
    O'Neill F, Condon F, McGloughlin T, et al. 2011. Dynamic hip screw versus DHS blade: a biomechanical comparison of the fixation achieved by each implant in bone. J Bone Joint Surg Br 93:616621.