SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    de Bakker PM, Manske SL, Ebacher V, et al. 2009. During sideways falls proximal femur fractures initiate in the superolateral cortex: evidence from high-speed video of simulated fractures. J Biomech 42:19171925.
  • 2
    Cummings SR, Rubin SM, Black D. 1990. The future of hip fractures in the United States. Numbers, costs, and potential effects of postmenopausal estrogen. Clin Orthop Relat Res 252:163166.
  • 3
    Chrischilles EA, Butler CD, Davis CS, et al. 1991. A model of lifetime osteoporosis impact. Arch Intern Med 151:20262032.
  • 4
    Office USGP. 1994. Hip fracture outcomes in people age 50 and over: Background paper. In: editor. U.S. Congress OoTA. Washington, DC: Office of Technology Assessment.
  • 5
    Kanis JA, McCloskey EV, Johansson H, et al. 2008. A reference standard for the description of osteoporosis. Bone 42:467475.
  • 6
    Roberts BJ, Thrall E, Muller JA, et al. 2010. Comparison of hip fracture risk prediction by femoral aBMD to experimentally measured factor of risk. Bone 46:742746.
  • 7
    Boehm HF, Horng A, Notohamiprodjo M, et al. 2008. Prediction of the fracture load of whole proximal femur specimens by topological analysis of the mineral distribution in DXA-scan images. Bone 43:826831.
  • 8
    Wachter NJ, Augat P, Mentzel M, et al. 2001. Predictive value of bone mineral density and morphology determined by peripheral quantitative computed tomography for cancellous bone strength of the proximal femur. Bone 28:133139.
  • 9
    Siu WS, Qin L, Leung KS. 2003. pQCT bone strength index may serve as a better predictor than bone mineral density for long bone breaking strength. J Bone Miner Metab 21:316322.
  • 10
    Lotz JC, Hayes WC. 1990. The use of quantitative computed tomography to estimate risk of fracture of the hip from falls. J Bone Joint Surg Am 72:689700.
  • 11
    Bonnaire FA, Buitrago-Tellez C, Schmal H, et al. 2002. Correlation of bone density and geometric parameters to the mechanical strength of the femoral neck. Injury 33:C47C53.
  • 12
    Kukla C, Gaebler C, Pichl RW, et al. 2002. Predictive geometric factors in a standardized model of femoral neck fracture. Experimental study of cadaveric human femurs. Injury 33:427433.
  • 13
    Manske SL, Liu-Ambrose T, de Bakker PM, et al. 2006. Femoral neck cortical geometry measured with magnetic resonance imaging is associated with proximal femur strength. Osteoporos Int 17:15391545.
  • 14
    Bauer JS, Kohlmann S, Eckstein F, et al. 2006. Structural analysis of trabecular bone of the proximal femur using multislice computed tomography: a comparison with dual X-ray absorptiometry for predicting biomechanical strength in vitro. Calcif Tissue Int 78:7889.
  • 15
    Courtney AC, Wachtel EF, Myers ER, et al. 1994. Effects of loading rate on strength of the proximal femur. Calcif Tissue Int 55:5358.
  • 16
    Genant HK, Grampp S, Gluer CC, et al. 1994. Universal standardization for dual x-ray absorptiometry: patient and phantom cross-calibration results. J Bone Miner Res 9:15031514.
  • 17
    ICfSiB. 1997. Standardization of proximal femur bone mineral density (BMD) measurements by DXA. International committee for standards in bone measurement. Bone 21:369370.
  • 18
    Kastl S, Sommer T, Klein P, et al. 2002. Accuracy and precision of bone mineral density and bone mineral content in excised rat humeri using fan beam dual-energy X-ray absorptiometry. Bone 30:243246.
  • 19
    Heini PF, Franz T, Fankhauser C, et al. 2004. Femoroplasty-augmentation of mechanical properties in the osteoporotic proximal femur: a biomechanical investigation of PMMA reinforcement in cadaver bones. Clin Biomech (Bristol, Avon) 19:506512.
  • 20
    Beckmann J, Ferguson SJ, Gebauer M, et al. 2007. Femoroplasty–augmentation of the proximal femur with a composite bone cement–feasibility, biomechanical properties and osteosynthesis potential. Med Eng Phys 29:755764.
  • 21
    Beckmann J, Springorum R, Vettorazzi E, et al. 2011. Fracture prevention by femoroplasty–cement augmentation of the proximal femur. J Orthop Res 29:17531758.
  • 22
    Lotz JC, Cheal EJ, Hayes WC. 1995. Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture. Osteoporos Int 5:252261.
  • 23
    Courtney AC, Wachtel EF, Myers ER, et al. 1995. Age-related reductions in the strength of the femur tested in a fall-loading configuration. J Bone Joint Surg Am 77:387395.
  • 24
    Cauley JA, Lui LY, Stone KL, et al. 2005. Longitudinal study of changes in hip bone mineral density in Caucasian and African–American women. J Am Geriatr Soc 53:183189.
  • 25
    Cummings SR, Black DM, Nevitt MC, et al. 1990. Appendicular bone density and age predict hip fracture in women. The Study of Osteoporotic Fractures Research Group. JAMA 263:665668.
  • 26
    Kanis JA, Gluer CC. 2000. An update on the diagnosis and assessment of osteoporosis with densitometry. Committee of Scientific Advisors, International Osteoporosis Foundation. Osteoporos Int 11:192202.
  • 27
    Pinilla TP, Boardman KC, Bouxsein ML, et al. 1996. Impact direction from a fall influences the failure load of the proximal femur as much as age-related bone loss. Calcif Tissue Int 58:231235.
  • 28
    Faulkner KG, Wacker WK, Barden HS, et al. 2006. Femur strength index predicts hip fracture independent of bone density and hip axis length. Osteoporos Int 17:593599.
  • 29
    Pulkkinen P, Eckstein F, Lochmuller EM, et al. 2006. Association of geometric factors and failure load level with the distribution of cervical vs. trochanteric hip fractures. J Bone Miner Res 21:895901.
  • 30
    Verhulp E, van Rietbergen B, Huiskes R. 2008. Load distribution in the healthy and osteoporotic human proximal femur during a fall to the side. Bone 42:3035.
  • 31
    Grassi L, Schileo E, Taddei F, et al. 2012. Accuracy of finite element predictions in sideways load configurations for the proximal human femur. J Biomech 45:394399.
  • 32
    Nishiyama KK, Gilchrist S, Guy P, et al. 2013. Proximal femur bone strength estimated by a computationally fast finite element analysis in a sideways fall configuration. J Biomech 46:12311236.
  • 33
    Koivumaki JE, Thevenot J, Pulkkinen P, et al. 2012. Ct-based finite element models can be used to estimate experimentally measured failure loads in the proximal femur. Bone 50:824829.
  • 34
    Smektala R, Endres HG, Dasch B, et al. 2008. The effect of time-to-surgery on outcome in elderly patients with proximal femoral fractures. BMC Musculoskelet Disord 9:171.
  • 35
    Skala-Rosenbaum J, Bartonicek J, Riha D, et al. 2011. Single-centre study of hip fractures in Prague, Czech Republic, 1997–2007. Int Orthop 35:587593.
  • 36
    Bouxsein ML, Szulc P, Munoz F, et al. 2007. Contribution of trochanteric soft tissues to fall force estimates, the factor of risk, and prediction of hip fracture risk. J Bone Miner Res 22:825831.
  • 37
    Sandler R, Robinovitch S. 2001. An analysis of the effect of lower extremity strength on impact severity during a backward fall. J Biomech Eng 123:590598.
  • 38
    Robinovitch SN, Hayes WC, McMahon TA. 1991. Prediction of femoral impact forces in falls on the hip. J Biomech Eng 113:366374.
  • 39
    Adams JE. 2009. Quantitative computed tomography Eur J Radiol 71:415424.
  • 40
    Engelke K, Adams JE, Armbrecht G, et al. 2008. Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD Official Positions. J Clin Densitom 11:123162.
  • 41
    Hansen S, Jensen JE, Ahrberg F, et al. 2011. The combination of structural parameters and areal bone mineral density improves relation to proximal femur strength: an in vitro study with high-resolution peripheral quantitative computed tomography. Calcif Tissue Int 89:335346.
  • 42
    Augat P, Reeb H, Claes LE. 1996. Prediction of fracture load at different skeletal sites by geometric properties of the cortical shell. J Bone Miner Res 11:13561363.
  • 43
    Diederichs G, Link T, Marie K, et al. 2008. Feasibility of measuring trabecular bone structure of the proximal femur using 64-slice multidetector computed tomography in a clinical setting. Calcif Tissue Int 83:332341.
  • 44
    Crabtree N, Loveridge N, Parker M, et al. 2001. Intracapsular hip fracture and the region-specific loss of cortical bone: analysis by peripheral quantitative computed tomography. J Bone Miner Res 16:13181328.
  • 45
    Cristofolini L, Juszczyk M, Martelli S, et al. 2007. In vitro replication of spontaneous fractures of the proximal human femur. J Biomech 40:28372845.
  • 46
    Juszczyk MM, Cristofolini L, Salva M, et al. 2013. Accurate in vitro identification of fracture onset in bones: failure mechanism of the proximal human femur. J Biomech 46:158164.
  • 47
    Sutter EG, Mears SC, Belkoff SM. 2010. A biomechanical evaluation of femoroplasty under simulated fall conditions. J Orthop Trauma 24:9599.
  • 48
    Maravic M, Le Bihan C, Landais P, et al. 2005. Incidence and cost of osteoporotic fractures in France during 2001. A methodological approach by the national hospital database. Osteoporos Int 16:14751480.
  • 49
    Kannus P, Parkkari J, Niemi S, et al. 2000. Prevention of hip fracture in elderly people with use of a hip protector. N Engl J Med 343:15061513.
  • 50
    Zacker C, Shea D. 1998. An economic evaluation of energy-absorbing flooring to prevent hip fractures. Int J Technol Assess Health Care 14:446457.
  • 51
    Sawka AM, Boulos P, Beattie K, et al. 2005. Do hip protectors decrease the risk of hip fracture in institutional and community-dwelling elderly? A systematic review and meta-analysis of randomized controlled trials. Osteoporos Int 16:14611474.