Compound-specific stable-isotope (δ13C) analysis in soil science

Authors


Abstract

This review provides current state of the art of compound-specific stable-isotope-ratio mass spectrometry (δ13C) and gives an overview on innovative applications in soil science. After a short introduction on the background of stable C isotopes and their ecological significance, different techniques for compound-specific stable-isotope analysis are compared. Analogous to the δ13C analysis in bulk samples, by means of elemental analyzer–isotope-ratio mass spectrometry, physical fractions such as particle-size fractions, soil microbial biomass, and water-soluble organic C can be analyzed. The main focus of this review is, however, to discuss the isotope composition of chemical fractions (so-called molecular markers) indicating plant- (pentoses, long-chain n-alkanes, lignin phenols) and microbial-derived residues (phospholipid fatty acids, hexoses, amino sugars, and short-chain n-alkanes) as well as other interesting soil constituents such as “black carbon” and polycyclic aromatic hydrocarbons. For this purpose, innovative techniques such as pyrolysis–gas chromatography–combustion–isotope-ratio mass spectrometry, gas chromatography–combustion–isotope-ratio mass spectrometry, or liquid chromatography–combustion–isotope-ratio mass spectrometry were compared. These techniques can be used in general for two purposes, (1) to quantify sequestration and turnover of specific organic compounds in the environment and (2) to trace the origin of organic substances. Turnover times of physical (sand < silt < clay) and chemical fractions (lignin < phospholipid fatty acids < amino sugars ≈ sugars) are generally shorter compared to bulk soil and increase in the order given in brackets. Tracing the origin of organic compounds such as polycyclic aromatic hydrocarbons is difficult when more than two sources are involved and isotope difference of different sources is small. Therefore, this application is preferentially used when natural (e.g., C3-to-C4 plant conversion) or artificial (positive or negative) 13C labeling is used.

Abstract

Substanzspezifische Stabilisotopenanalyse (δ13C) in der Bodenforschung

Dieser Artikel fasst den Stand der Forschung bezüglich der substanzspezifischen Stabilisotopenanalyse (δ13C) zusammen. Innovative Anwendungen und ein Ausblick für künftige Forschungsaktivitäten werden anhand von Fallbeispielen gegeben. Zunächst wird die ökologische Bedeutung von stabilen C-Isotopen kurz erläutert. Daran schließt sich ein methodischer Teil an, in welchem die verschiedenen Techniken gegenüber gestellt werden. Analog zu δ13C-Messungen der Feinerde mittels Elementaranalysator-Isotopenverhältnis-Massenspektrometrie können physikalisch isolierte Fraktionen (z. B. Korngrößenfraktionen, mikrobielle Biomasse, DOC) analysiert werden. Der Schwerpunkt dieses Übersichtsartikels liegt jedoch in der Diskussion der C-Isotopensignatur chemischer Fraktionen (sog. Biomarker), welche Rückschlüsse auf Herkunft und Dynamik pflanzlicher (Pentosen, langkettige n-Alkane, Ligninphenole) und mikrobieller Rückstände (Phospholipidfettsäuren, Hexosen, Aminozucker und kurzkettige n-Alkane) sowie anderer interessanter Substanzen im Boden erlaubt wie z. B. „Black Carbon” und polyzyklische aromatische Kohlenwasserstoffe. Zu diesem Zweck kommen innovative Techniken zum Einsatz wie z. B. Pyrolyse-Gaschromatographie-Isotopenverhältnismassenspektrometrie, Gaschromatographie-Verbrennungs-Isotopenverhältnismassenspektrometrie und Flüssigkeitschromatographie-Oxidations-Isotopenverhältnismassenspektrometrie. Innovative ökologische Anwendungen werden erläutert, welche sich prinzipiell in zwei Kategorien einteilen lassen: (1) Quantifizierung der Sequestrierung und des Umsatzes dieser Verbindungen in der Umwelt; (2) Untersuchung der Herkunft spezifischer organischer Substanzen. Umsatzzeiten physikalischer (Sand < Schluff < Ton) und chemischer Fraktionen (Lignin < Phospholipidfettsäuren < Aminozucker ≈ Zucker) sind generall kleiner als jene der gesamten organischen Substanz in der Feinerde und nehmen in der in Klammern angegebenen Reihenfolge zu. Die Untersuchung der Herkunft organischer Substanzen (z. B. polyzyklischer aromatischer Kohlenwasserstoffe) ist problematisch, weil die Unterschiede der Isotopensignatur verschiedener Quellen gering sind und meist mehr als zwei Quellen zur Isotopensignatur des untersuchten Biomarkers beitragen. Deswegen sollte die Untersuchung der Herkunft organischer Substanzen auf Tracer-Experimente beschränkt werden, wie z. B. nach natürlicher (C3-C4-Pflanzenwechsel) bzw. künstlicher (13C-An- oder -Abreicherung) Markierung.

Ancillary