The evaporation method: Extending the measurement range of soil hydraulic properties using the air-entry pressure of the ceramic cup

Authors


Abstract

Knowledge of hydraulic functions is required for various hydrological and plant-physiological studies. The evaporation method is frequently used for the simultaneous determination of hydraulic functions of unsaturated soil samples, i.e., the water-retention curve and hydraulic-conductivity function. All methodic variants of the evaporation method suffer from the limitation that the hydraulic functions can only be determined to a mean tension of ≈ 60 kPa. This is caused by the limited measurement range of the tensiometers of typically 80 kPa on the dry end. We present a new, cost- and time-saving approach which overcomes this restriction. Using the air-entry pressure of the tensiometer's porous ceramic cup as additional defined tension value allows the quantification of hydraulic functions up to close to the wilting point. The procedure is described, uncertainties are discussed, and measured as well as simulated test results are presented for soil samples of various origins, different textures (sand, loam, silt, clay, and peat) and variable dry bulk density. The experimental setup followed the system HYPROP which is a commercial device with vertically aligned tensiometers that is optimized to perform evaporation measurements. During the experiment leaked water from the tensiometer interior wets the surrounding soil of the tensiometer cup and can lead to a tension retardation as shown by simulation results. This effect is negligible when the tensiometers are embedded vertically. For coarsely textured soils and horizontal tensiometer alignment, however, the retardation must be considered for data evaluation.

Ancillary