A revised chronological framework for the deglaciation of the Lake Michigan lobe of the south-central Laurentide Ice Sheet is presented based on radiocarbon ages of plant macrofossils archived in the sediments of low-relief ice-walled lakes. We analyze the precision and accuracy of 15 AMS 14C ages of plant macrofossils obtained from a single ice-walled lake deposit. The semi-circular basin is about 0.72 km wide and formed of a 4- to 16-m-thick succession of loess and lacustrine sediment inset into till. The assayed material was leaves, buds and stems of Salix herbacea (snowbed willow). The pooled mean of three ages from the basal lag facies was 18 270 ± 50 14C a BP (21 810 cal. a BP), an age that approximates the switch from active ice to stagnating conditions. The pooled mean of four ages for the youngest fossil-bearing horizon was 17 770 ± 40 14C a BP (21 180 cal. a BP). Material yielding the oldest and youngest ages may be obtained from sediment cores located at any place within the landform. Based on the estimated settling times of overlying barren, rhythmically bedded sand and silt, the lacustrine environment persisted for about 50 more years. At a 67% confidence level, the dated part of the ice-walled lake succession persisted for between 210 and 860 cal. a (modal value: 610 cal. a). The deglacial age of five moraines or morainal complexes formed by the fluctuating margin of the Lake Michigan lobe have been assessed using this method. There is no overlap of time intervals documenting when ice-walled lakes persisted on these landforms. The rapid readvances of the lobe during deglaciation after the last glacial maximum probably occurred at some point between the periods of ice-walled lake sedimentation. Copyright © 2011 John Wiley & Sons, Ltd.