Get access

Structural and vibrational analyses of 2-(2-benzofuranyl)-2-imidazoline

Authors

  • C. D. Contreras,

    1. Cátedra de Fisicoquímica I. Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, R. Argentina
    Search for more papers by this author
  • M. Montejo,

    1. Departamento de Química Física y Analítica, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain
    Search for more papers by this author
  • J. J. López González,

    1. Departamento de Química Física y Analítica, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain
    Search for more papers by this author
  • J. Zinczuk,

    1. Instituto de Química Rosario (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Santa Fé, R. Argentina
    Search for more papers by this author
    • Member of the Carrera de Investigador Científico, CONICET, R. Argentina.

  • S. A. Brandán

    Corresponding author
    1. Cátedra de Fisicoquímica I. Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, R. Argentina
    • Cátedra de Fisicoquímica I. Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Lorenzo 456, T 4000 CAN, San Miguel de Tucumán, Tucumán, R. Argentina.
    Search for more papers by this author

Abstract

We have studied 2-(2-benzofuranyl)-2-imidazoline (BFI) and characterized it by using infrared and Raman spectroscopies. The density functional theory (DFT) method together with Pople's basis set shows that two conformers exist for the title molecule as have been theoretically determined in the gas phase and that, probably, an average of both conformations is present in the solid phase. The harmonic vibrational wavenumbers for the optimized geometry of the latter conformer were calculated at the B3LYP/6-31G* level in the proximity of the isolated molecule. For a complete assignment of the IR and Raman spectra in the compound in the solid phase, DFT calculations were combined with Pulay's scaled quantum mechanics force field (SQMFF) methodology in order to fit the theoretical wavenumbers to the experimental ones. Copyright © 2010 John Wiley & Sons, Ltd.

Ancillary