• surface-enhanced Raman scattering;
  • genomic DNA;
  • apple leaf tissue


Ultrasensitive Raman measurements of nucleic acids are possible by exploiting the effect of surface-enhanced Raman scattering (SERS). In this work, the vibrational spectra of eight genomic DNAs from in vitro grown apple leaf tissues (Malus domestica Borkh., Fam Rosaceae, cvs. Florina, Idared, Rebra, Goldrush, Romus 3, Romus 4 and the rootstocks M9 and M26) were analyzed using surface-enhanced Raman spectroscopy, in the wavenumber range 200–1800 cm−1. SERS signatures, spectroscopic band assignments and structural interpretations of these plant genomic DNAs are reported. Strong dependences of the SERS spectra on genomic DNA amount in the measured sample volume and on time were observed. Similarities of the SERS signals of DNAs from Rebra and Romus 3 leaves were detected. To our knowledge, this is the first SERS study on genomic DNA from leaf tissues. The present work provides a basis for future use of surface-enhanced Raman spectroscopy to analyze specific plant DNA–ligand interactions or DNA structural changes induced by plants' stress conditions associated with their natural environment. Besides, this study will generate information that is valuable in the development of low-level plant DNA-based analytical sensors. Copyright © 2010 John Wiley & Sons, Ltd.