• sol–gel;
  • TiO2 thin film;
  • Raman spectroscopy;
  • resonance Raman effect


Raman spectra of TiO2 films prepared via the sol–gel process were studied by UV and visible Raman spectroscopy. The evolution of the phases of TiO2 films during annealing was investigated, and the relative intensities of the Raman bands excited with 325 nm were found to be distinct from those of the bands excited with 514 nm. The transmittance and FTIR spectra of the films annealed at different temperatures were characterized. The crystallization process of the powders and thin films treated by different annealing methods were also studied with Raman spectroscopy. The results show that the change in the relative intensities is caused by the resonance Raman effect. The anatase to rutile transition of the powder occurs at 700 °C, while that of the thin film occurs at 800 °C. The analysis of Raman band shape (peak position and full width at half-maximum) after conventional furnace annealing and rapid thermal annealing indicates the influence of the non-stoichiometry and phonon confinement effect. Copyright © 2011 John Wiley & Sons, Ltd.