SEARCH

SEARCH BY CITATION

Keywords:

  • quantitative;
  • olive oil;
  • adulterated;
  • Raman spectroscopy;
  • chemometrics

Abstract

Commercially available extra virgin olive oils are often adulterated with some other cheaper edible oils with similar chemical compositions. A set of extra virgin olive oil samples adulterated with soybean oil, corn oil and sunflower seed oil were characterized by Raman spectra in the region 1000–1800 cm−1. Based on the intensity of the Raman spectra with vibrational bands normalized by the band at 1441 cm−1 (CH2), external standard method (ESM) was employed for the quantitative analysis, which was compared with the results achieved by support vector machine (SVM) methods. By plotting the adulterant content of extra virgin olive oil versus its corresponding band intensity in the Raman spectrum at 1265 cm−1, the calibration curve was obtained. Coefficient of determination (R2) of each curve was 0.9956, 0.9915 and 0.9905 for extra virgin olive oil samples adulterated with soybean oil, corn oil and sunflower seed oil, respectively. The mean absolute relative errors were calculated as 7.41, 7.78 and 9.45%, respectively, with ESM, while they were 5.10, 6.96 and 4.55, in the SVM model, respectively. The prediction accuracy shows that the ESM based on Raman spectroscopy is a promising technique for the authentication of extra virgin olive oil. The method also has the advantages of simplicity, time savings and non-requirement of sample preprocessing; especially, a portable Raman system is suitable for on-site testing and quality control in field applications. Copyright © 2011 John Wiley & Sons, Ltd.