The effect of the pH on the interaction of L-arginine with colloidal silver nanoparticles. A Raman and SERS study


Correspondence to: M.M. Campos-Vallette, Department of Chemistry, Faculty of Sciences, Laboratory of Vibrational Spectroscopy, University of Chile, POBox 653, Santiago, Chile. E-mail:


Raman and surface enhanced Raman scattering (SERS) spectroscopies were used to study the pH effect (7 to 9) on the interaction of arginine (Arg) with colloidal Ag nanoparticles (AgNps). A new methodology was implemented in order to obtain reproducible SERS spectra in solution. The dependence of the Arg concentration on the stability of the AgNps is discussed. A pH increasing of the colloidal solution to the limits of the Arg pKa2 value induces a preferential and stable Arg–metal interaction. ξ potential measurements of the Arg–AgNps system at different pH conditions studied provide information about the Arg–AgNps interaction; the pH increasing favors the interaction. SERS spectra at pH 7 indicate that the molecule interacts with the Ag surface only through the guanidinium fragment. By increasing the pH to 9, the molecule adopts a new conformation on the surface; the metal–analyte interaction is verified through the guanidinium, carboxylate and the aliphatic moieties. In addition, theoretical calculations performed by using the extended Hückel method for a model of Arg interacting with an Ag surface support the observed SERS results. Copyright © 2013 John Wiley & Sons, Ltd.