• de Vibe M, Bjørndal A, Tipton E, Hammerstrøm K, Kowalski K. 2012. Mindfulness based stress reduction (MBSR) for improving health, quality of life, and social functioning in results. Campbell Systematic Reviews 3.
  • Gleser LJ, Olkin I. 2009. Stochastically dependent effect sizes: random-effects models, in H Cooper LV Hedges JC Valentine (eds.), The handbook of research synthesis and meta-analysis (2nd ed.), pp. 357376, Russell Sage Foundation, New York.
  • Hedges LV, Tipton E, Johnson MC. 2010. Robust variance estimation in meta-regression with dependent effect size estimates. Research Synthesis Methods 1: 3965.
  • Huber PJ. 1967. ‘The behavior of maximum likelihood estimates under non-standard conditions’, Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability 1, 221-223, University of California Press, Berkeley, CA.
  • Jackson D, Riley R, White IR. 2011. Multivariate meta-analysis: potential and promise. Stat Med 30: 24812498.
  • Konstantopoulos S. 2011. Fixed effects and variance components estimation in three-level meta-analysis. Research Synthesis Methods 2: 6176.
  • Liang K, Zeger SL. 1986. Longitudinal data analysis using generalized linear models. Biometrika 73: 1322.
  • López-López JA, Lipsey MW, Wilson SJ, Tanner-Smith EE, Van den Noortgate W. c. 2013. Assessing the influence of moderators in meta-analysis with dependent effect sizes: A Monte Carlo simulation’, Unpublished Manuscript. University of Murcia, Spain.
  • Marín-Martínez F, Sánchez-Meca J. 2010. Weighting by inverse variance or by sample size in random-effects meta-analysis. Educational and Psychological Measurement 70: 5673.
  • Mavridis D, Salanti G. 2012. A practical introduction to multivariate meta-analysis. Statistical Methods in Medical Research 22: 133158.
  • Raudenbush SW, Bryk AS. 2002, Hierarchical linear models: Applications and data analysis methods, (2nd ed.), Sage Publications, London.
  • Riley R. 2009. Multivariate meta-analysis: the effect of ignoring within-study correlation. Journal of the Royal Statistical Society, Series A 27: 670686.
  • Riley RD, Thompson JR, Abrams KR. 2008. An alternative model for bivariate random-effects meta-analysis when the within-study correlations are unknown. Biostatistics 9: 172186.
  • Samson JE, Ojanen T, Hollo A. 2012. Social goals and youth aggression: meta-analysis of prosocial and antisocial goals. Social Development 21: 645666.
  • Stevens JR, Taylor AM. 2009. Hierarchical dependence in meta-analysis. J Educ Behav Stat 34: 4673.
  • Tanner-Smith EE, Wilson SJ, Lipsey MW. 2013. The comparative effectiveness of outpatient treatment for adolescent substance abuse: a meta-analysis. Journal of Substance Abuse Treatment 44: 145158.
  • Tipton E. 2013a. Robust variance estimation in meta-regression with binary dependent effects. Research Synthesis Methods 4(2): 169187.
  • Tipton, E. c. 2013b. ‘Small sample adjustments for robust variance estimation with meta-regression’, Unpublished Manuscript. Teachers College, Columbia University.
  • Uttal DH, Meadow NG, Tipton E, Hand LL, Alden AR, Warren C, Newcombe NS. 2013. The malleability of spatial skills: a meta-analysis of training studies. Psychological Bulletin 139: 352402.
  • Viechtbauer W. 2010. Conducting meta-analysis in R with the metafor package. Journal of Statistical Software 36: 148.
  • Wei Y, Higgins JPT. 2012. Estimating within-study covariances in multivariate meta-analysis with multiple outcomes. Statistics in Medicine 32: 11911205.
  • White H. 1980. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48: 817838.
  • Williams R. 2012. ‘Using robust standard errors to combine multiple regression estimates with meta-analysis’, PhD thesis, Dept. of Research Methodology, Loyola University Chicago.
  • Wilson SJ, Tanner-Smith EE, Lipsey MW, Steinka-Fry, K, Morrison J. 2011. Dropout prevention and intervention programs: effects on school completion and dropout among school-aged children and youth. Campbell Systematic Reviews 8.