Prospects for using marker-assisted breeding to improve maize production in Africa

Authors


Abstract

Maize (Zea mays L.) production in sub-Saharan Africa has historically been constrained by a number of biotic and abiotic factors, including drought, insects, disease, and weeds. New agricultural research involving genomics and molecular markers may assist plant breeders in developing new varieties that will benefit producers and consumers in this region. Over the past few decades, plant breeders have used molecular markers to identify numerous genomic regions affecting maize production and nutritional value. Marker-assisted selection (MAS) presents the potential to improve the efficiency of plant breeding by allowing for the transfer of these specific genomic regions of interest and accelerating the recovery of the elite parent background. However, to this point, few examples of successful MAS in breeding programs, particularly those with benefits in Africa, have been noted. This review discusses the use of molecular markers in the identification of quantitative trait loci (QTL) affecting the production and nutritional quality of maize, as well as the potential to use the results from the vast number of QTL studies that have been performed in MAS breeding programs. Copyright © 2008 Society of Chemical Industry

Ancillary