SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Long S, Ainsworth E, Leakey A, Nösberger J and Ort D, Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312: 19181921 (2006).
  • 2
    Kiers ET, Leakey RRB, Izac A-M, Heinemann JA, Rosenthal E, Nathan D, et al., Agriculture at a crossroads. Science 320: 320321 (2008).
  • 3
    Pimentel D and Pimentel M, Global environmental resources versus world population growth. Ecol Econ 59: 195198 (2006).
  • 4
    Costanza R, d'Arge R, de Groot R, Farber S, Grasso M, Hannon B, et al., The value of the world's ecosystem services and natural capital. Nature 387: 253260 (1997).
  • 5
    Millenium Ecosystem Assessment, Ecosystems and Human Well-being: Biodiversity Synthesis. World Resources Institute, Washington, DC (2005).
  • 6
    European Fertilizer Manufacturers Association, Harvesting Energy with Fertilizers. [Online]. (2002). Available: http://cms.efma.org/EPUB/easnet.dll/ExecReq/Page?eas:template_im=000BC2&eas:dat_im=000C23 [17 December 2008].
  • 7
    Lal R, Anthropogenic influences on world soils and implications to global food security. Adv Agron 93: 6993 (2007).
  • 8
    Tan ZX, Wiebke KD and Lal R, Global soil nutrient depletion and yield reduction. J Sustain Agric 26: 123146 (2005).
  • 9
    Holland JM, The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agric Ecosyst Environ 103: 125 (2004).
  • 10
    Lal R, Managing world soils for food security and environmental quality. Adv Agron 74: 155192 (2001).
  • 11
    Oldeman LR, Global Extent of Soil Degradation. International Soil and Information Center, Wageningen (1992).
  • 12
    Oldeman LR, Makkeling RTA and Sombroek WG, World Map of the Status of Human-induced Soil Degradation: an Explanatory Note (2nd edn). International Soil and Information Center, Wageningen (1992).
  • 13
    CCSP, The Effects of Climate Change on Agriculture, Land Resources, Water Resources, and Biodiversity in the United States. A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. US Department of Agriculture, Washington, DC (2008).
  • 14
    Bellamy PH, Loveland PL, Bradley RI, Lark RM and Kirk GJD, Carbon losses from all soils across England and Wales 1978–2003. Nature 437: 245248 (2008).
  • 15
    Fowler C and Mooney PR, Shattering: Food Politics, and the Loss of Genetic Diversity. University of Arizona Press, Tucson, AZ (1990).
  • 16
    Gaston KJ, Blackburn TM and Klein Goldewijk K, Habitat conversion and global avian biodiversity loss. Proc R Soc Lond B 270: 12931300 (2003).
  • 17
    Harlan JR, Genetics of disaster. J Environ Qual 1: 212215 (1972).
  • 18
    Sala OE, Chapin FSI, Armesto JJ and Berlow E, Global biodiversity scenarios for the year 2100. Science 287: 17701774 (2000).
  • 19
    Tilman D, Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proc Natl Acad Sci USA 96: 59956000 (1999).
  • 20
    Tilmann D, Fargione J, Wolff B and D'Antonio C, Forecasting agriculturally driven global environmental change. Science 292: 281284 (2001).
  • 21
    Vandermeer JH and Perfecto I, Biodiversity, agriculture and rain forests, in A Breakfast of Biodiversity: the True Causes of Rain Forest Destruction (2nd edn), ed. by VandermeerJH and PerfectoI. Food First: Institute for Food and Development Policy, Oakland, CA, pp. 138160 (2005).
  • 22
    Vitousek PM, Mooney HA, Lubchenko J and Mellilo JM, Human domination of earth's ecosystems. Science 277: 494499 (1997).
  • 23
    Hajjar R, Jarvis DI and Gemmill-Herren B, The utility of crop genetic diversity in maintaining ecosystem services. Agric Ecosyst Environ 123: 261270 (2008).
  • 24
    Pretty JN, Brett C, Gee D, Hine RE, Mason CF, Morrison JIL, et al., An assessment of the total external costs of UK agriculture. Agric Syst 65: 113136 (2000).
  • 25
    Cooperrider DL, Positive image, positive action: the affirmative basis of organizing, in Appreciative Management and Leadership: the Power of Positive Thought and Action in Organizations, ed. by SrivastvaS and CooperriderDL. Jossey-Bass, San Francisco, CA, pp. 91125 (1990).
  • 26
    Maeder P, Fliessbach A, Dubois D, Gunst L, Fried P and Niggli U, Soil fertility and biodiversity in organic farming. Science 296: 16941697 (2002).
  • 27
    Brussard L, de Ruiter PC and Brown GG, Soil biodiversity for agricultural sustainability. Agric Ecosyst Environ 121: 233244 (2007).
  • 28
    Hoeppner JW, Entz MH, McConkey BG, Zentner RP and Nagy CN, Energy use and efficiency in two Canadian organic and conventional crop production systems. Renew Agric Food Syst 21: 6067 (2006).
  • 29
    Pearson CJ, Regenerative, semi-closed systems: a priority for twenty-first century agriculture. Bioscience 57: 409418 (2007).
  • 30
    Stockdale EA, Shepherd MA, Fortune S and Cuttle SP, Soil fertility in organic farming systems—fundamentally different? Soil Use Manag 18: 301308 (2002).
  • 31
    Ghorbani R, Wilcockson S, Koocheki A and Leifert C, Soil management for sustainable crop disease control: a review. Environ Chem Lett 6: 149162 (2008).
  • 32
    Manlay RJ, Feller C and Swift MJ, Historical evaluation of soil organic matter concepts and their relationship with the fertility and sustainability of cropping systems. Agric Ecosyst Environ 119: 217233 (2007).
  • 33
    Pankhurst CE, Ophelkeller K, Doube BM and Gupta VSR, Biodiversity of soil microbial communities in agricultural systems. Biodiversity Conservat 5: 197209 (1996).
  • 34
    Weller DM, Raaijmakers JM, McSpadden Gardener BB and Tomashow LS, Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40: 309348 (2002).
  • 35
    Riley H, Pommeresche R, Eltun R, Hansen S and Korsaeth A, Soil structure, organic matter and earthworm activity in a comparison of cropping systems with contrasting tillage, rotations, fertilizer levels and manure use. Agric Ecosyst Environ 124: 275284 (2008).
  • 36
    Christensen BT and Johnston AE, Soil organic matter and soil quality—lessons learned from long-term experiments at Askov and Rothamsted, in Soil quality for crop production and ecosystem health (Developments in Soil Science, 25), ed. by GregorichEG and CarterMR. Elsevier Science, Amsterdam, pp. 399430 (1997).
  • 37
    Schjønning P, Munkholm LJ, Elmholt S and Olesen JE, Organic matter and soil tilth in arable farming: management makes a difference within 5–6 years. Agric Ecosyst Environ 122: 157171 (2007).
  • 38
    Kuhn NJ, Erodibility of soil and organic matter—independence of organic matter resistance to interrill erosion. Earth Surface Process Landforms 32: 794802 (2007).
  • 39
    Morgan RPC, Soil Erosion and Conservation (2nd edn). Longman, Harlow (1995).
  • 40
    Peigne J, Ball BC, Roger-Estrade J and David C, Is conservation tillage suitable for organic agriculture? A review. Soil Use Manag 23: 129144 (2007).
  • 41
    Foereid B and Hogh-Jensen H, Carbon sequestration potential of organic agriculture in northern Europe—a modelling approach. Nutrient Cycling Agroecosyst 68: 1324 (2004).
  • 42
    Liebig MA, Morgan JA, Reeder JD, Ellert BH, Gollany HT and Schumann GE, Greenhouse gas contributions and mitigation potential of agricultural practices in northwestern USA and western Canada. Soil Tillage Res 83: 2552 (2005).
  • 43
    Martens DA, Emmerich W, Mclain JET and Johnsen TN, Atmospheric carbon mitigation potential of agricultural management in the southwestern USA. Soil Tillage Res 83: 95119 (2005).
  • 44
    Blanco-Canqui H and Lal R, No-tillage and soil-profile carbon sequestration: an on-farm assessment. Soil Sci Am J 72: 693701 (2008).
  • 45
    Paustian K, Andren O, Janzen HH, Lal R, Smith P, Tian G, et al., Agricultural soils as a sink to mitigate CO2 emissions. Soil Use Manag 13: 230244 (1997).
  • 46
    Cannell RQ, Davies DB, Mackney D and Pidgeon JD, The suitability of soils for sequential direct drilling of combine-harvested crops in Britain: a provisional classification. Outlook Agric 9: 306316 (1978).
  • 47
    Finckh MR and Wolfe MS, Diversification strategies, in The Epidemiology of Plant Disease, ed. by CookeBM, Gareth JonesD and KayeB. Springer, Dordrecht, NL, pp. 269308 (2006).
  • 48
    Mason HE and Spaner D, Competitive ability of wheat in conventional and organic management systems; a review of the literature. Can J Plant Sci 86: 333343 (2006).
  • 49
    Rasmussen IA, Askegaard M and Olesen JE, Long-term organic crop rotation experiments for cereal production—perennial weed control and nitrogen leaching. Proc. First Scientific Conf. of the International Society of Organic Agriculture Research (ISOFAR), pp. 227230 (2005).
  • 50
    Clapperton MJ, Lee NO, Binet F and Conner RL, Earthworms indirectly reduce the effects of take-all (Gaeumannomyces graminis var. tritici) on soft white spring wheat (Triticum aestivum cv. Fielder). Soil Biol Biochem 33: 15311538 (2001).
  • 51
    Stephens PM, Davoren CW, Ryder MH and Doube BM, Influence of the earthworms Aporrectodea rosea and Aporrectodea trapezoides on Rhizoctonia solani disease of wheat seedlings and the interaction with a surface mulch of cereal–pea straw. Soil Biol Biochem 26: 12851287 (1994).
  • 52
    Stephens PM, Davoren CW, Doube BM and Ryder MH, Ability of the lumbricid earthworms Aporrectodea rosea and Aporrectodea trapezoides to reduce the severity of take-all under greenhouse and field conditions. Soil Biol Biochem 26: 12911297 (1994).
  • 53
    Stephens PM, Davoren CW, Ryder MH, Doube BM and Correll RL, Field evidence for reduced severity of Rhizoctonia bare-patch disease of wheat, due to the presence of the earthworms Aporrectodea rosea and Aporrectodea trapezoides. Soil Biol Biochem 26: 14951500 (1994).
  • 54
    Stark C, Condron LM, Stewart A, Di HJ and O'Callaghan M, Effects of past and current crop management on soil microbial biomass and activity. Biol Fertil Soils 43: 531540 (2007).
  • 55
    Odoerfer A, Obst A and Pommer G, The effects of different leaf crops in a long lasting monoculture with winter wheat. 2. Disease development and effects of phytosanitary measures. Agribiol Res 47: 5666 (1994).
  • 56
    Jørgensen RN, Nørremark M, Sørensen CG and Andersen NA, Utilising scripting language for unmanned and automated guided vehicles operating within row crops. Comput Electron Agric 62: 190203 (2008).
  • 57
    Hatfield JL, Gitelson AA, Schepers JS and Walthall CL, Application of spectral remote sensing for agronomic decisions. Agron J 100: 117131 (2008).
  • 58
    Sylvester-Bradley R, Lord E, Sparkes DL, Scott RK, Wiltshire JJ and Orson J, An analysis of the potential of precision farming in Northern Europe. Soil Use Land Manag 14: 18 (1999).
  • 59
    Huang B, Sun WX, Zhao YC, Zhu J, Yang RQ, Zou Z, et al., Temporal and spatial variability of soil organic matter and total nitrogen in an agricultural system as affected by farming practices. Geoderma 139: 336345 (2007).
  • 60
    Juska A, Busch L and Tanaka K, The blackleg epidemic in Canadian rapeseed as a ‘normal agricultural accident’. Ecol Appl 7: 13501356 (1997).
  • 61
    Zadoks JC and Schein RD, Epidemiology and Plant Disease Management. Oxford University Press, New York, NY (1979).
  • 62
    Bayles RA, Flath K, Hovmøller MS and de Vallavieille-Pope C, Breakdown of the Yr17 resistance to yellow rust of wheat in northern Europe. Agronomie 20: 805811 (2000).
  • 63
    Johnson T, Man-guided evolution in plant rusts. Science 133: 357362 (1961).
  • 64
    Trenbath BR, Diversify or be damned. Ecologist 5: 7683 (1975).
  • 65
    Ullstrup AJ, The impacts of the Southern corn leaf blight epidemics of 1970–1971. Annu Rev Phytopathol 10: 3750 (1972).
  • 66
    Hauggaard-Nielsen H, Jørnsgaard B, Kinane J and Jensen ES, Grain legume–cereal intercropping: the practical application of diversity, competition and facilitation in arable and organic cropping systems. Renew Agric Food Syst 23: 312 (2008).
  • 67
    Mundt CC, Use of multiline cultivars and cultivar mixtures for disease management. Annu Rev Phytopathol 40: 381410 (2002).
  • 68
    Kølster P, Munk L and Stølen O, Disease severity and grain yield in barley multilines with resistance to powdery mildew. Crop Sci 29: 14591463 (1989).
  • 69
    Wolfe MS, Barley diseases: maintaining the value of our varieties, in Barley Genetics VI, ed. by MunkL. Munksgaard International, Copenhagen, pp. 10551067 (1992).
  • 70
    Zhu Y, Chen H, Fan J, Wang Y, Li Y, Chen J, et al., Genetic diversity and disease control in rice. Nature 406: 718722 (2000).
  • 71
    Zhu Y, Fang H, Wang Y, Fan JX, Yang S, Mew TW, et al., Panicle blast and canopy moisture in rice cultivar mixtures. Phytopathology 95: 433438 (2005).
  • 72
    Tilman D, Wedin D and Knos J, Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379: 718720 (1996).
  • 73
    Lu PL, Yu Q, Wang E, Liu JD and Xu SH, Effects of climatic variation and warming on rice development across South China. Clim Res 36: 7988 (2008).
  • 74
    Ortiz R, Sayre KD, Govaerts B, Gupta R, Subbarao GV, Ban T, et al., Climate change: can wheat beat the heat? Agric Ecosyst Environ 126: 4658 (2008).
  • 75
    Dodig D, Zoric M, Knezevic D, King SR and Surlan-Momirovic G, Genotype × environment interaction for wheat yield in different drought stress conditions and agronomic traits suitable for selection. Aust J Agric Res 59: 536545 (2008).
  • 76
    Wolfe M, Baresel J, Desclaux D, Goldringer I, Hoad S, Kovacs G, et al., Developments in breeding cereals for organic agriculture. Euphytica 163: 323346 (2008).
  • 77
    Lammerts van Bueren ET, Struik PC and Jacobsen E, Ecological aspects in organic farming and its consequences for an organic crop ideotype. Neth J Agric Sci 50: 126 (2002).
  • 78
    Lammerts van Bueren E, Østergård H, Goldringer I and Scholten O, Plant breeding for organic and sustainable, low-input agriculture: dealing with genotype–environment interactions. Euphytica 163: 321322 (2008).
  • 79
    Kern M, Food, fibre, fuel and industrial products of the future: challenges and opportunities. Understanding the strategic potential of plant genetic engineering. J Agron Crop Sci 198: 291305 (2002).
  • 80
    Lynch M and Walsh B, Genetics and Analysis of Quantitative Traits. Sinauer Associates, Sunderland, MA (1998).
  • 81
    Backes G and Østergård H, Molecular markers to exploit genotype–environment interactions of relevance in organic growing systems. Euphytica 163: 523531 (2008).
  • 82
    Yin X and Struik PC, Applying modelling experiences from the past to shape crop systems biology: the need to converge crop physiology and functional genomics. New Phytol 179: 629642 (2008).
  • 83
    Allard RW, Genetic changes associated with the evolution of adaptedness in cultivated plants and their wild progenitors. J Hered 79: 225238 (1988).
  • 84
    Harlan HV and Martini ML, A composite hybrid mixture. J Am Soc Agron 21: 487490 (1929).
  • 85
    Suneson CA, An evolutionary plant breeding method. Agron J 48: 188191 (1956).
  • 86
    Wolfe MS, Hinchscliffe KE, Clarke SM, Jones H, Haigh Z, Snape J, et al., Evolutionary breeding of wheat, Proceedings of the COST SUSVAR Workshop on Cereal Crop Diversity: Implications for Production and Products, 13–14 June 2006, La Besse, France, ed. by Ostergaard H and Fontaine L. ITAB (Institut Technique de l'Agriculture Biologique), Paris, pp. 7780 (2006).
  • 87
    Murphy K, Lammer D, Lyon S, Brady C and Jones SS, Breeding for organic and low-input farming systems: an evolutionary–participatory breeding method for inbred cereal grains. Renew Agric Food Syst 20: 4855 (2005).
  • 88
    Paillard S, Goldringer I, Enjalbert J, Doussinault G, de Vallavieille-Pope C and Brabant P, Evolution of resistance against powdery mildew in winter wheat populations conducted under dynamic managment. I—Is specific resistance selected? Theor Appl Genet 101: 449456 (2000).
  • 89
    Paillard S, Goldringer I, Enjalbert J, Trottet M, David J, de Vallavieille-Pope C, et al., Evolution of resistance against powdery mildew in winter wheat populations conducted under dynamic managment. II—Adult plant resistance. Theor Appl Genet 101: 457462 (2000).
  • 90
    Goldringer I, Prouin C, Rousset M, Galic N and Bonnin I, Rapid differentiation of experimental populations of wheat for heading-time in response to local climatic conditions. Ann Bot 98: 805817 (2006).
  • 91
    Rhoné B, Remoué C, Galic N, Goldringer I and Bonnin I, Insight into the genetic bases of climatic adaptation in experimentally evolving wheat populations. Mol Ecol 17: 930943 (2008).
  • 92
    Mangione D, Senni S, Puccioni M, Grando S and Ceccarelli S, The cost of participatory barley breeding. Euphytica 150: 289306 (2006).
  • 93
    Chiffoleau Y and Desclaux D, Participatory plant breeding: the best way to breed for sustainable agriculture? Int J Sustain Agric 4: 119130 (2006).
  • 94
    Desclaux D, Nolot J, Chiffoleau Y, Goze E and Leclerc C, Changes in the concept of genotype–environment interactions to fit agriculture diversification and decentralized participatory plant breeding: pluridisciplinary point of view. Euphytica 163: 533546 (2008).
  • 95
    Dawson JD, Murphy KM and Jones SS, Decentralized selection and participatory approaches in plant breeding for low-input systems. Euphytica 160: 143154 (2008).
  • 96
    Szerencsits M and Heß J, Trinkwasserschutz durch Ökologischen Landbau—Strategien für die Umsetzung von nachhaltigem Stoffstrommanagement. Wasser Boden 53: 1016 (2001).
  • 97
    Sanchez PA, Buresh RJ and Leakey RRB, Trees, soils and food security. Philos Trans R Soc Lond A 352: 949961 (1997).
  • 98
    De Muth S, Community Supported Agriculture (CSA): An Annotated Bibliography and Resource Guide. (Agri-topics; 93–02). U.S. Department of Agriculture (1993).
  • 99
    Farnworth CR, Jiggins JJ and Thomas EV, Creating Food Futures—Trade, Ethics and Environment. Gower Publishing, Abingdon (2008).
  • 100
    Kloppenburg JR, First the Seed. The Political Economy of Plant Biotechnology (2nd edn). University of Wisconsin Press, Madison, WI (2004).
  • 101
    Louwaars N, Seeds of confusion. The impact of policies on seed systems. Dissertation, University of Wageningen (2007).
  • 102
    Kloppenburg J, Seeds, sovereignty, and the Via Campesina: Plants, property, and the promise of open source biology, paper prepared for the Workshop on Food Sovereignty: Theory, Praxis and Power, November 17–18, 2008, St. Andrews College, University of Saskatchewan, Saskatoon. Available: http://www.drs.wisc.edu/kloppenburg/_publications/2008%20Seeds%20and%20Sovereignty.pdf [22 November 2008].
  • 103
    Swinton SM, Lupi F, Robertson GP and Hamilton SK, Ecosystem services and agriculture: cultivating agricultural ecosystems for diverse benefits. Ecol Econ 64: 245252 (2007).
  • 104
    Topp CFE, Stockdale EA, Watson CA and Rees RM, Estimating resource use efficiences in organic agriculture: a review of budgeting approaches used. J Sci Food Agric 87: 27822790 (2007).
  • 105
    Tilman D, Cassman KG, Matson PA, Naylor R and Polasky S, Agricultural sustainability and intensive production pratices. Nature 418: 671677 (2002).
  • 106
    Van den Belt H, Jansen A, Keulartz FWJ, Valkema F and van der Weele CN, Global change and biotechnology. Commissie Genetische Modificatie (COGEM) Report CGM 2008-06 (2008).
  • 107
    Huang J, Pray C and Rozelle S, Enhancing the crops to feed the poor. Nature 418: 678684 (2002).
  • 108
    Pollan M, Farmer in chief, in The New York Times. [Online]. (2008). Available: http://www.nytimes.com/2008/10/12/magazine/12policy-t.html?_r=1&oref=slogin&pagewanted=print [12 October 2008].