• agro-ecosystem;
  • nitrogen flow;
  • field investigation;
  • human activity;
  • nitrogen use efficiency


BACKGROUND: To diagnose problems that threaten regional sustainability and to devise appropriate treatment measures in China's agro-ecosystems, a study was carried out to quantify the nitrogen (N) flow in China's typical agro-ecosystems and develop potential solutions to the increasing environmental N load.

RESULTS: The analysis showed that owing to human activity in the agro-ecosystems of Changjiang River Basin the mean total input of anthropogenic reactive N (i.e. chemical fertiliser, atmospheric deposition and bio-N fixation) increased from 4.41 × 109 kg-N in 1980 to 7.61 × 109 kg-N in 1990 and then to 1.43 × 1010 kg-N in 2000, with chemical fertiliser N being the largest contributor to N load. Field investigation further showed that changes in human behaviour and rural urbanisation have caused rural communities to become more dependent on chemical fertilisers. In rural regions, around 4.17 kg-N of per capita annual potential N load as excrement was returned to farmlands and 1.38 kg-N directly discharged into river systems, while in urbanised regions, around 1.00 kg-N of per capita annual potential N load as excrement was returned to farmlands and 5.62 kg-N discharged into river systems in urban areas.

CONCLUSION: The findings of the study suggest that human activities have significantly altered the N cycle in agro-ecosystems of China. With high population density and scarce per capita water resources, non-point source pollution from agro-ecosystems continues to put pressure on aquatic ecosystems. Increasing the rate of organic matter recycling and fertiliser efficiency with limited reliance on chemical fertilisers might yield tremendous environmental benefits. Copyright © 2011 Society of Chemical Industry