SEARCH

SEARCH BY CITATION

Keywords:

  • emulsion droplets;
  • Pickering stabilisation;
  • air bubbles;
  • nanoparticles;
  • microparticles;
  • starch granules;
  • fat crystals

Abstract

The physical scientist views food as a complex form of soft matter. The complexity has its origin in the numerous ingredients that are typically mixed together and the subtle variations in microstructure and texture induced by thermal and mechanical processing. The colloid science approach to food product formulation is based on the assumption that the major product attributes such as appearance, rheology and physical stability are determined by the spatial distribution and interactions of a small number of generic structural entities (biopolymers, particles, droplets, bubbles, crystals) organised in various kinds of structural arrangements (layers, complexes, aggregates, networks). This review describes some recent advances in this field with reference to three discrete classes of dispersed systems: particle-stabilised emulsions, emulsion gels and aerated emulsions. Particular attention is directed towards explaining the crucial role of the macromolecular ingredients (proteins and polysaccharides) in controlling the formation and stabilisation of the colloidal structures. The ultimate objective of this research is to provide the basic physicochemical insight required for the reliable manufacture of novel structured foods with an appealing taste and texture, whilst incorporating a more healthy set of ingredients than those found in many existing traditional products. © 2012 Society of Chemical Industry