Preparation and HPLC applications of rigid macroporous organic polymer monoliths



Rigid porous polymer monoliths are a new class of materials that emerged in the early 1990s. These monolithic materials are typically prepared using a simple molding process carried out within the confines of a closed mold. For example, polymerization of a mixture comprising monomers, free-radical initiator, and porogenic solvent affords macroporous materials with large through-pores that enable applications in a rapid flow-through mode. The versatility of the preparation technique is demonstrated by its use with hydrophobic, hydrophilic, ionizable, and zwitterionic monomers. Several system variables can be used to control the porous properties of the monolith over a broad range and to mediate the hydrodynamic properties of the monolithic devices. A variety of methods such as direct copolymerization of functional monomers, chemical modification of reactive groups, and grafting of pore surface with selected polymer chains is available for the control of surface chemistry. Since all the mobile phase must flow through the monolith, the convection considerably accelerates mass transport within the molded material, and the monolithic devices perform well, even at very high flow rates. The applications of polymeric monolithic materials are demonstrated mostly on the separations in the HPLC mode, although CEC, gas chromatography, enzyme immobilization, molecular recognition, advanced detection systems, and microfluidic devices are also mentioned.