SEARCH

SEARCH BY CITATION

Keywords:

  • Glycopeptide enrichment;
  • Glycosylation;
  • HILIC;
  • LC-MS;
  • RP

Abstract

Dedicated and specific sample preparation and adequate chromatographic resolution prior to MS are necessary for comprehensive and site-specific glycosylation analysis to compensate for high heterogeneity of protein glycosylation, low-abundance of specific glycoforms and ion-suppression effects caused by coelution of other peptides. This article describes a scheme for glycopeptide profiling, which comprises HILIC batch enrichment followed by complementary HILIC and RP-LC in 1-D and 2-D approaches. For reproducible and sensitive nano-LC/ESI-MS analysis, we used ZIC-HILIC and RP18e monolithic silica capillaries and assessed their retention characteristics and complementarity for glycopeptide separations. The experiments revealed that pre-enrichment of glycopeptides in combination with LC employing both phases considerably improves site-specific elucidation of glycosylation heterogeneity. Zwitterionic hydrophilic interaction liquid chromatography showed high capability to separate glycopeptides by their glycan composition, which coeluted on RP18e. By varying solvent conditions, retention can be well tuned, and efficient separations were achieved even in absence of any additives like salt or formic acid. RP18e facilitated glycopeptide separations with high peak capacity based on peptide sequence and degree of sialylation. Implementing both orthogonal and complementary phases in 1-D and 2-D LC setups was shown to significantly increase the number of different identified glycoforms and possesses great potential for comprehensive glycoproteomics approaches.