Get access

Solvent-assisted dispersive micro-SPE by using aminopropyl-functionalized magnetite nanoparticle followed by GC-PID for quantification of parabens in aqueous matrices

Authors


Correspondence: Maryam Abbasghorbani, Department of Chemistry, Payame Noor University, Mashhad, Iran; Gas Science Department, Gas Division, Research Institute of Petroleum Industry, Tehran, Iran

E-mail: aghorbani2003@yahoo.com; M.Abbasghorbani@uva.nl

Fax: +31205255604

Abstract

In this research, solvent-assisted dispersive micro-SPE was introduced as a simple modified technique for the determination of parabens in water and cosmetic samples. Aminopropyl-functionalized magnetite nanoparticles (MNPs) were successfully synthesized and applied. GC with photoionization detector was used for the separation and detection of parabens. In this method, hexylacetate (15 μL) as a solvent and aminopropyl-functionalized MNPs (5 μg) as a sorbent were added to an aqueous sample (10 mL) and then the sample was sonicated. Dispersed magnetite was collected in the bottom of the conical tube by using a strong magnet and then ACN was added as a desorption solvent. Forty microliters of this solvent was transferred into a microvial and then acetic anhydride and pyridine were added, thus derivatization was performed by acetic anhydride. After evaporation, 1 μL of derivatized sample was injected into a gas chromatograph for analysis. Several important parameters, such as kind of organic solvent, desorption solvent and volume, amount of aminopropyl-functionalized MNPs and effect of salt addition were investigated. Under optimum conditions, the limits of detection achieved were between 50 and 300 ng/L, with RSDs (n = 5) lower than 8%. Under the optimum conditions, the enrichment factors ranged from 217 to 1253 and the extraction recoveries ranged from 10 to 62%. The recoveries were obtained for the analytes in river water and mouthwash solution and hand cream in the range of 87–103%. The advantages of proposed method are simplicity of operation, rapidity, high extraction yields, and environmental friendly character.

Get access to the full text of this article

Ancillary