Get access

Genetic assessment of paternity and relatedness in a managed population of cougars

Authors


  • Associate Editor: Emily K. Latch.

Abstract

Understanding the social dynamics of large carnivores is critical to effective conservation and management planning. We made the first attempt to delineate both paternity and relatedness for a population of cougar (Puma concolor) using microsatellite data. We analyzed a long-term genetic dataset collected from a hunted population in the Garnet Mountains of western Montana. We assigned paternity for 62.5% of litters sampled using both exclusion and likelihood analyses. Attempts at reconstructing unsampled paternal genotypes resulted in delineating possible sires for 8 more litters. Sires were on average younger than reported for males involved in pairings assessed via field data in other cougar populations. Although most mating pairs were unrelated, 5 of 17 pairings involved cougars with levels of relatedness corresponding to half-sibling and full-sibling or parent offspring relationship (r = 0.215–0.575). Relatedness among adult and subadult males was higher than relatedness levels among adult and subadult females. Relatedness among males in the Garnet population differed from patterns hypothesized to occur under male-biased dispersal theories for cougars. The long-term impact of the turnover of resident cougars in hunted populations is still unclear and warrants additional research. Our results highlight the utility of monitoring cougar demographic parameters using a combination of genetic and field data that in turn may assist managers with determining cougar harvest quotas or strategies, harvest seasons, sustainable harvest, and the appropriate management level of cougar populations. © 2011 The Wildlife Society.

Get access to the full text of this article

Ancillary