Geographic variation in migration chronology and winter distribution of midcontinent greater white-fronted geese


  • Associate Editor: Michael Eichholz



We evaluated spatial and temporal differences in migratory behavior among different breeding groups of midcontinent greater white-fronted geese (Anser albifrons) using band-recovery data and observations of neck collared geese during migration and winter. Birds from different breeding areas were initially delineated by geographic distance into 6 banding reference areas (BRAs): 1) interior Alaska, 2) North Slope of Alaska, 3) western Northwest Territories (NWT), 4) western Nunavut, 5) central Nunavut, and 6) eastern Nunavut. The banding groups also differed by breeding habitat, with geese from interior Alaska nesting in the boreal forest (taiga), and all other groups breeding in tundra habitats. Geese from interior Alaska migrated earlier during autumn, and were more likely to winter farther south (in Mexico) than geese from other breeding areas. Geese banded in central and eastern Nunavut (Queen Maud Gulf and Inglis River) wintered farther east (in Louisiana) than geese from other breeding areas. Small-scale (within-state) geographic segregation of wintering flocks was evidenced by the recent (post-1990) nearly exclusive use of a new wintering area in north central Texas by geese from interior Alaska. Segregation among BRAs was also apparent in Mexico, where taiga geese were found predominantly in the central Highlands (states of Zacatecas and Durango), whereas tundra geese mostly used states along the Gulf Coast (primarily Tamaulipas). Interior Alaska birds initiated spring migration earlier than geese from other areas, and were more likely than others to stop in the Rainwater Basin of Nebraska, a region where cholera outbreaks periodically kill thousands of geese. Geese from interior Alaska were the first to arrive at spring staging areas in prairie Canada where BRAs exhibited spatial delineation (a longitudinal cline) in relation to breeding areas. Our results show significant geographic and temporal variation among taiga and tundra breeding cohorts during autumn, winter, and spring. Temporal and spatial differences in migratory behavior may allow management practices that accommodate potential demographic differences between taiga and tundra populations. © 2013 The Wildlife Society.