Gas phase reaction of Cl atoms with a series of oxygenated organic species at 295 K

Authors


Abstract

The relative rate technique has been used to determine the rate constants for the reaction of chlorine atoms with a series of oxygenated organic species. Experiments were performed at 295 ± 2 K and atmospheric pressure of synthetic air or nitrogen. The decay rates of the organic species were measured relative to that of ethane or n-butane. Using rate constants of 5.7 × 10−11 cm3 molecule−1 s−1, and 2.25 × 10−10 cm3 molecule−1 s−1 for the reaction of Cl with ethane and n-butane respectively the following rate constants were derived, in units of 10−11 cm3 molecule−1 s−1: propane, (16.0 ± 0.4);i-butane, (15.1 ± 0.9) n-pentane, (31.0 ± 1.6); n-hexane, (34.5 ± 2.3); cyclohexane, (36.1 ± 1.5); methanol, (4.57 ± 0.40); ethanol, (8.45 ± 0.91); n-propanol, (14.4 ± 1.2); t-butylalcohol, (3.26 ± 0.19); acetaldehyde, (8.45 ± 0.79); propionaldehyde, (11.3 ± 0.9); dimethylether, (20.5 ± 0.8); diethylether, (35.6 ± 2.8); and methyl-t-butylether, (16.6 ± 1.2). Quoted errors represent 2σ, and do not include any errors due to uncertainties in the rate constants used to place our relative measurements on an absolute basis. The results are discussed with respect to the mechanisms of these reactions and to previous literature data.

Ancillary