• soil organic matter;
  • land use change;
  • carbon stocks;
  • tropical soils;
  • fast-growth tree plantations


Proper assessment of environmental quality or degradation requires knowledge of how terrestrial C pools respond to land use change. Forest plantations offer a considerable potential to sequester C in aboveground biomass. However, their impact on initial levels of soil organic carbon (SOC) varies from strong losses to gains, possibly affecting C balances in afforestation or reforestation initiatives. We compiled paired-plot studies on how SOC stocks under native vegetation change after planting fast-growth Eucalyptus species in Brazil, where these plantations are becoming increasingly important. SOC changes for the 0–20 and 0–40 cm depths varied between −25 and 42 Mg ha−1, following a normal distribution centered near zero. After replacing native vegetation by Eucalyptus plantations, mean SOC changes were −1·5 and 0·3 Mg ha−1 for the 0–20 and 0–40 cm depths, respectively. These are very low figures in comparison to C stocks usually sequestered in aboveground biomass and were statistically nonsignificant as demonstrated by a t-test at p < 0·05. Similar low, nonsignificant SOC changes were estimated after data were stratified into first or second rotation cycles, soil texture and biome (savanna, rainforest or grassland). Although strong SOC losses or gains effectively occurred in some cases, their underpinning causes could not be generally identified in the present work and must be ascribed in a case basis, considering the full set of environmental and management conditions. We conclude that Eucalyptus spp. plantations in average have no net effect on SOC stocks in Brazil. Copyright © 2012 John Wiley & Sons, Ltd.