• [1]
    M. Achermann, M. Petruska, S. Kos, D. Smith, D. Koleske, and V. Klimov, Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well, Nature 429, 642646 (2004).
  • [2]
    A. Alivisatos, A. Harris, N. Levinos, M. Steigerwald, and L. Brus, Electronic states of semiconductor clusters: homogeneous and inhomogeneous broadening of the optical spectrum, J. Chem. Phys. 89, 40014011 (1988).
  • [3]
    ANSI, Specifications for the chromaticity of solid state lighting products (American National Standards Institute) (to be published).
  • [4]
    V. Bachmann, T. Justel, A. Meijerink, C. Ronda, and P.J. Schmidt, Luminescence properties of SrSi2O2N2 doped with divalent rare earth ions, J. Lumin. (Netherlands) 121, 441449 (2006).
  • [5]
    W.W. Beers, in: Physics and Chemistry of Luminescent Materials PV 99–49, edited by C. R. Ronda, L. E. Shea, and A. M. Srivastava (The Electrochemical Society, 2000), p. 106.
  • [6]
    L. Bellaiche, T. Mattila, L. Wang, S. Wei, and A. Zunger, Resonant hole localization and anomalous optical bowing in InGaN alloys, Appl. Phys. Lett. 74, 18421844 (1999).
  • [7]
    P. Benalloul, C. Barthou, C. Fouassier, A. Georgobiani, L. Lepnev, Y. Emirov, A. Gruzintsev, B. Tagiev, O. Tagiev, and R. Jabbarov, Luminescence of Eu2+ in calcium thiogallate, J. Electrochem. Soc. (USA) 150, G6265 (2003 ).
  • [8]
    BES, Basic Research Needs for Solid-State Lighting (U.S. Department of Energy, Office of Basic Energy Sciences) (2006).
  • [9]
    J. Boeuf, Plasma display panels: physics, recent developments and key issues, J. Phys. D, Appl. Phys. 36, R5379 (2003).
  • [10]
    D. Bour, D. Treat, R. Thornton, R. Geels, and D. Welch, Drift leakage current in AlGaInP quantum-well lasers, IEEE J. Quantum Electron. 29, 13371343 (1993).
  • [11]
    B. Bowers, (1998) Lengthening the day: a history of lighting technology (Oxford University Press, Oxford).
  • [12]
    E. Bretschneider, Efficacy limits for solid-state white light sources, Photonics Spectra 41, 7274, 76–78, 81 (2007).
  • [13]
    L. Brus, A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites, J. Chem. Phys. 79, 55665571 (1983).
  • [14]
    V. Buissette, A. Huignard, K. Lahlil, T. Gacoin, J. Boilot, A. Franville, and R. Mahiou, Functionalized luminescent YVO4:Ln3+ nanoparticles, Proc. SPIE – Int. Soc. Opt. Eng. (USA) 5222, 140149 (2003).
  • [15]
    S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Spontaneous emission of localized excitons in InGaN single and multiquantum well structures, Appl. Phys. Lett. 69, 41884190 (1996).
  • [16]
    S. Chichibu, A. Uedono, T. Onuma, T. Sota, B. Haskell, S. DenBaars, J. Speck, and S. Nakamura, Limiting factors of room-temperature nonradiative photoluminescence lifetime in polar and nonpolar GaN studied by time-resolved photoluminescence and slow positron annihilation techniques, Appl. Phys. Lett. 86, 021914-1-021914-3 (2005).
  • [17]
    CIE, Method of Measuring and Specifying Colour Rendering Properties of Light Sources 13.3-1995 (Commission Internationale de l'Eclairage) (1995).
  • [18]
    M.D. Craven, S.H. Lim, F. Wu, J.S. Speck, and S.P. Denbaars, Structural characterization of nonpolar (11-20) a-plane GaN thin films grown on (1-102) r-plane sapphire, Appl. Phys. Lett. 81, 469–471 (2002).
  • [19]
    M. Darbandi, W. Hoheisel, and T. Nann, Silica coated, water dispersible and photoluminescent Y(V,P)O4:Eu3+,Bi3+ nanophosphors, Nanotechnology 17, 41684173 (2006).
  • [20]
    W. Davis and Y. Ohno, Toward an improved color rendering metric, Proc. SPIE – Int. Soc. Opt. Eng. (USA) 5941, 18 (2005).
  • [21]
    P. de Haan, M. Mueller, and A. Peters, Does the hybrid toyota prius lead to rebound effects? Analysis of size and number of cars previously owned by swiss prius buyers, Ecological Econ. 58, 592605 (2006).
  • [22]
    J. Elsner, R. Jones, M. Heggie, P. Sitch, M. Haugk, T. Frauenheim, S. Oberg, and P. Briddon, Deep acceptors trapped at threading-edge dislocations in GaN, Phys. Rev. B, Condens. Matter 58, 1257112574 (1998).
  • [23]
    S. Fan, P. Villeneuve, J. Joannopoulos, and E. Schubert, High extraction efficiency of spontaneous emission from slabs of photonic crystals, Phys. Rev. Lett. 78, 32943297 (1997).
  • [24]
    M. Galtrey, R. Oliver, M. Kappers, C. Humphreys, D. Stokes, P. Clifton, and A. Cerezo, Three-dimensional atom probe studies of an InxGa1-xN/GaN multiple quantum well structure: assessment of possible indium clustering, Appl. Phys. Lett. 90, 061903 (2007).
  • [25]
    S. Geller, Crystal chemistry of garnets, Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 125, 147 (1967).
  • [26]
    X. Guo, J. Graff, E. Schubert, and R. Karlicek, Photon recycling semiconductor light emitting diode, Proc. SPIE – Int. Soc. Opt. Eng. (USA) 3938, 6067 (2000).
  • [27]
    A.H. Herzog, D.L. Keune, and M.G. Craford, High-efficiency Zn-diffused GaAs electroluminescent diodes, J. Appl. Phys. 43, 600608 (1972).
  • [28]
    M. Hines and P. Guyot-Sionnest, Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals, J. Phys. Chem. 100, 468471 (1996).
  • [29]
    I.H. Ho and G.B. Stringfellow, Solid phase immiscibility in GaInN, Appl. Phys. Lett. 69, 27012703 (1996).
  • [30]
    Y. Huh, J. Park, S. Kweon, J. Kim, J. Kim, and Y. Do, Phosphor converted three-band white LED, Bull. Korean Chem. Soc. 25, 15851588 (2004).
  • [31]
    C. Humphreys, Does In form In-rich clusters in InGaN quantum wells?, Philos. Mag. 87, 19711982 (2007).
  • [32]
    IEA, Light's Labour's Lost: Policies for Energy-efficient Lighting (International Energy Agency, 2006).
  • [33]
    R. Jabbarov, C. Chartier, B. Tagiev, O. Tagiev, N. Musayeva, C. Barthou, and P. Benalloul, Radiative properties of Eu2+ in BaGa2S4, J. Phys. Chem. Solids 66, 10491056 (2005).
  • [34]
    J.D. Joannopoulos, R.D. Meade, and J.N. Winn, (1995) Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, NJ).
  • [35]
    S. Kamiyama, S. Takanami, Y. Tomida, K. Iida, T. Kawashima, S. Fukui, M. Iwaya, H. Kinoshita, T. Matsuda, T. Yasuda, S. Otani, H. Amano, and I. Akasaki, Violet and UV light-emitting diodes grown on ZrB2 substrate, phys. stat. sol. a 200, 6770 (2003).
  • [36]
    S. Kamiyama, M. Iwaya, H. Amano, and I. Akasaki, Nitride-based light-emitting diodes grown on particular substrates: ZrB2, (3038)4H-SiC and r-faced sapphire, Mater. Res. Soc. Symp. Proc. 831, 569–579 (2005).
  • [37]
    S. Karpov, Suppression of phase separation in InGaN due to elastic strain, MRS Internet J. Nitride Semicond. Res. (USA) 3, 19 (1998).
  • [38]
    R. Kasuya, T. Isobe, and H. Kuma, Glycothermal synthesis and photoluminescence of YAG:Ce3+ nanophosphors, J. Alloys Compd. (Switzerland) 408–412, 820823 (2006).
  • [39]
    P.R.C. Kent and A. Zunger, Carrier localization and the origin of luminescence in cubic InGaN alloys, Appl. Phys. Lett. 79, 1977 (2001).
  • [40]
    K.C. Kim, M. Schmidt, H. Sato, F. Wu, N. Fellows, M. Saito, K. Fujito, J.S. Speck, S. Nakamura, and S.P. DenBaars, Improved electroluminescence on nonpolar m-plane InGaN/GaN quantum well LEDs, phys. stat. sol. RRL 3, 125 (2007).
  • [41]
    K. Kishino and I. Nomura, Optical device materials for a wide visible spectral range, Photonics Based on Wavelength Integration and Manipulation (IPAP Books) 2, 39 (2005).
  • [42]
    D.L. Klipstein, The Great Internet Light Bulb Book, Part I, (accessed June, 2007) (1996).
  • [43]
    A. Kobayashi, S. Kawano, Y. Kawaguchi, J. Ohta, and H. Fujioka, Room temperature epitaxial growth of m-plane GaN on lattice-matched ZnO substrates, Appl. Phys. Lett. 90, 041908 (2007).
  • [44]
    D.D. Koleske, A.E. Wickenden, R.L. Henry, and M.E. Twigg, Influence of MOVPE growth conditions on carbon and silicon concentrations in GaN, Journal of Crystal Growth 242, 5569 (2002).
  • [45]
    T. Kozaki, H. Matsumura, Y. Sugimoto, S. Nagahama, and T. Mukai, High-power and wide wavelength range GaN-based laser diodes, Proc. SPIE – Int. Soc. Opt. Eng. (USA) 6133, 1330613306 (2006).
  • [46]
    M.R. Krames and C.P. Kocot, Light emitting semiconductor devices including wafer bonded heterostructures, U.S. Patent 6,525,335 (2000).
  • [47]
    M.R. Krames, O.B. Shchekin, R. Mueller-Mach, G.O. Mueller, L. Zhou, G. Harbers, and M.G. Craford, Status and future of high-power light-emitting diodes for solid-state lighting, J. Display Technology 3, 160175 (2007).
  • [48]
    M. Krames, M. Ochiai-Holcomb, G. Hofler, C. Carter-Coman, E. Chen, I. Tan, P. Grillot, N. Gardner, H. Chui, J. Huang, S. Stockman, F. Kish, M. Craford, T. Tan, C. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting <50% external quantum efficiency, Appl. Phys. Lett. 75, 23652367 (1999).
  • [49]
    K. Kumakura, T. Makimoto, N. Kobayashi, T. Hashizume, T. Fukui, and H. Hasegawa, Minority carrier diffusion length in GaN: dislocation density and doping concentration dependence, Appl. Phys. Lett. 86, 52105-1521051-3 (2005).
  • [50]
    F.D. Larche and J.W. Cahn, Stress effects on III-V solid-liquid equilibria, J. Appl. Phys. 62, 12321239 (1987).
  • [51]
    R. Le, Toquin and A. Cheetham, Red-emitting cerium-based phosphor materials for solid-state lighting applications, Chem. Phys. Lett. 423, 352356 (2006).
  • [52]
    S.D. Lester, F.A. Ponce, M.G. Craford, and D.A. Steigerwald, High dislocation densities in high-efficiency GaN-based light-emitting diodes, Appl. Phys. Lett. 66, 12491251 (1995).
  • [53]
    L. Liu and J. Edgar, Substrates for gallium nitride epitaxy, Mater. Sci. Eng. R-Rep. 37, 61127 (2002).
  • [54]
    M. Losurdo, D. Giuva, G. Bruno, S. Huang, T. Kim, and A. Brown, The surface modification and reactivity of LiGaO2 substrates during GaN epitaxy, J. Crystal Growth 264, 139149 (2004).
  • [55]
    S. Mathis, A. Romanov, L. Chen, G. Beltz, W. Pompe, and J. Speck, Modeling of threading dislocation reduction in growing GaN layers, phys. stat. sol. a 179, 125145 (2000).
  • [56]
    J. McKeever, A. Boca, A.D. Boozer, J.R. Buck, and H.J. Kimble, Experimental realization of a one-atom laser in the regime of strong coupling, Nature 425, 268271 (2003).
  • [57]
    R. Mueller-Mach, G. Mueller, M. Krames, H. Hoppe, F. Stadler, W. Schnick, T. Juestel, and P. Schmidt, Highly efficient all-nitride phosphor-converted white light emitting diode, phys. stat. sol. a 202, 17271732 ( 2005).
  • [58]
    R. Mueller-Mach, G.O. Mueller, M.R. Krames, and T. Trottier, High-power phosphor-converted light-emitting diodes based on III-Nitrides, IEEE J. Sel. Top. Quantum Electron. (USA) 8, 339345 (2002).
  • [59]
    R. Mueller-Mach, G. Mueller, T. Trottier, M. Krames, A. Kim, and D. Steigerwald, Green phosphor-converted LED, Proc. SPIE – Int. Soc. Opt. Eng. (USA) 4776, 131136 (2002).
  • [60]
    R. Mueller-Mach, G.O. Mueller, P.J. Schmidt, D.U. Wiechert, and J. Meyer, Nitridosilicates, a new family of phosphors for color conversion of LEDs, Proc. SPIE – Int. Soc. Opt. Eng. (USA) 5941, 18 (2005).
  • [61]
    S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, Ingan/gan/algan-based laser diodes with modulation-doped strained-layer superlattices Jpn. J. Appl. Phys. 2, Lett. (Japan) 36, L1568-L1571 (1997).
  • [62]
    T. Nakamura, S. Fujiwara, H. Mori, and K. Katayama, Novel cladding structure for ZnSe-based white light emitting diodes with longer lifetimes of over 10,000 h, Jpn. J. Appl. Phys. 1, Regul. Pap. Short Notes Rev. Pap. (Japan) 43, 12871292 (2004).
  • [63]
    N. Nakayama, S. Itoh, A. Ishibashi, and Y. Mori, High-efficiency ZnCdSe-ZnSSe-ZnMgSSe green and blue light-emitting diodes, Proc. SPIE – Int. Soc. Opt. Eng. (USA) 2693, 3642 (1996).
  • [64]
    Navigant, U.S. Lighting Market Characterization Volume I: National Lighting Inventory and Energy Consumption Estimate (U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program) (2002).
  • [65]
    J. Nelson, E. Jones, S. Myers, D. Follstaedt, H. Hjalmarson, J. Schirber, R. Schneider, J. Fouquet, V. Robbins, and K. Carey, Compositional dependence of the luminescence of In0.49(AlyGa1-y)0.51P alloys near the direct-indirect band-gap crossover, Phys. Rev. B, Condens. Matter (USA) 53, 15893901 (1996).
  • [66]
    B. Neubert, P. Bruckner, F. Habel, F. Scholz, T. Riemann, J. Christen, M. Beer, and J. Zweck, GaInN quantum wells grown on facets of selectively grown GaN stripes, Appl. Phys. Lett. 87, 182111-1182111-3 (2005).
  • [67]
    J. O'Neill, I. Ross, A. Cullis, T. Wang, and P. Parbrook, Electron-beam-induced segregation in InGaN/GaN multiple-quantum wells, Appl. Phys. Lett. 83, 19651967 (2003).
  • [68]
    V. Odnoblyudov and C. Tu, Growth and fabrication of InGaNP-based yellow-red light emitting diodes, Appl. Phys. Lett. 89, 191107-1191107-3 (2006).
  • [69]
    Y. Ohno, Color rendering and luminous efficacy of white led spectra, Proc. SPIE – Int. Soc. Opt. Eng. (USA) 5530, 8898 (2004).
  • [70]
    Y. Ohno and W. Davis, National Institute of Standards and Technology White Light Simulator Version 7.1 (unpublished software for scientific research purposes only) (2006).
  • [71]
    J. Ohta, K. Mitamura, A. Kobayashi, T. Honke, H. Fujioka, and M. Oshima, Epitaxial growth of InN on nearly lattice-matched (Mn,Zn)Fe2O4, Solid State Commun. (USA) 137, 208211 (2006).
  • [72]
    M. Peters, V. Rossin, M. Everett, and E. Zucker, High power, high efficiency laser diodes at JDSU, Proc. SPIE – Int. Soc. Opt. Eng. (USA) 6456, G4560-G4560 (2007).
  • [73]
    M.S. Rea, (2000) The IESNA Lighting Handbook (Illumination Engineering Society of North America, New York).
  • [74]
    K. Riwotzki and M. Haase, Colloidal YVO4:Eu and YP0.95V0.05O4:Eu nanoparticles: luminescence and energy transfer processes, J. Phys. Chem. B (USA) 105, 1270912713 (2001).
  • [75]
    K. Riwotzki, H. Meyssamy, A. Kornowski, and M. Haase, Liquid-phase synthesis of doped nanoparticles: colloids of luminescing LaPO4:Eu and CePo4:Tb particles with a narrow particle size distribution, J. Phys. Chem. B (USA) 104, 28242828 (2000).
  • [76]
    R.J. Roedel, A.R. Vonneida, R. Caruso, and L.R. Dawson, Effect of dislocations in Ga1-xAlxAs:Si light-emitting diodes, J. Electrochem. Soc. 126, 637641 (1979).
  • [77]
    S.J. Rosner, E.C. Carr, M.J. Ludowise, G. Girolami, and H.I. Erikson, Correlation of cathodoluminescence inhomogeneity with microstructural defects in epitaxial GaN grown by metalorganic chemical-vapor deposition, Appl. Phys. Lett. 70, 420422 (1997).
  • [78]
    R. Rossetti, J. Ellison, J. Gibson, and L. Brus, Size effects in the excited electronic states of small colloidal CdS crystallites, J. Chem. Phys. 80, 44644469 (1984).
  • [79]
    P. Schlotter, R. Schmidt, and J. Schneider, Luminescence conversion of blue light emitting diodes, Appl. Phys. A, Mater. Sci. Process. (Germany) 64, 417418 (1997).
  • [80]
    I. Schnitzer, E. Yablonovitch, C. Caneau, and T. Gmitter, Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures, Appl. Phys. Lett. 62, 131133 (1993).
  • [81]
    U. Schwarz and M. Kneissl, Nitride emitters go nonpolar, phys. stat. sol. RRL 1, A44–A46 (2007).
  • [82]
    A.A. Setlur, W.J. Heward, Y. Gao, A.M. Srivastava, R. Gopi, Chandran, and M.V. Shankar, Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si,Ge)3O12 and its use in LED based lighting, Chem. Mater. 18, 33143322 (2006).
  • [83]
    R. Sharma, P. Pattison, H. Masui, R. Farrell, T. Baker, B. Haskell, F. Wu, S. DenBaars, J. Speck, and S. Nakamura, Demonstration of a semipolar (10-1-3) InGaN/GaN green light emitting diode, Appl. Phys. Lett. 87, 231110(2005).
  • [84]
    O. Shchekin, J. Epler, T. Trottier, T. Margalith, D. Steigerwald, M. Holcomb, P. Martin, and M. Krames, High performance thin-film flip-chip InGaN-GaN light-emitting diodes, Appl. Phys. Lett. 89, 071109 (2006).
  • [85]
    J.A. Simmons, M.E. Coltrin, and J.Y. Tsao, Beyond the vacuum tube: lighting solutions for the 21st century, Optics and Photonics News (2007).
  • [86]
    T. Smeeton, M. Kappers, J. Barnard, M. Vickers, and C. Humphreys, Electron-beam-induced strain within InGaN quantum wells: false Indium “cluster” detection in the transmission electron microscope, Appl. Phys. Lett. 83, 54195421 (2003).
  • [87]
    L. Spanhel, M. Haase, H. Weller, and A. Henglein, Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles, J. Am. Chem. Soc. (USA) 109, 56495655 (1987).
  • [88]
    J.S. Speck and S.J. Rosner, The role of threading dislocations in the physical properties of GaN and its alloys, Physica B 274, 2432 (1999).
  • [89]
    F. Stadler, O. Oeckler, H. Hoppe, M. Moller, R. Pottgen, B. Mosel, P. Schmidt, V. Duppel, A. Simon, , and W. Schnick, Crystal structure, physical properties and HRTEM investigation of the new oxonitridosilicate EuSi2O2N2, Chem. Eur. J. (Germany) 12, 69846990 (2006).
  • [90]
    D.A. Steigerwald, J.C. Bhat, D. Collins, R.M. Fletcher, M.O. Holcomb, M.J. Ludowise, P.S. Martin, and S.L. Rudaz, Illumination with solid-state lighting technology, IEEE J. Sel. Top. Quantum Electron. (USA) 8, 310320 (2002).
  • [91]
    T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. Romano, and S. Sakai, Direct evidence that dislocations are non-radiative recombination centers in GaN, Jpn. J. Appl. Phys. 2, Lett. (Japan) 37, L398400 (1998).
  • [92]
    G. Tews, W. Roth, and S. Tews, Advanced silicate phosphors for improved white LED, in: Proceedings of the Global Phosphor Summit, Seoul, Korea 2007, Paper 19.
  • [93]
    J.Y. Tsao, Light Emitting Diodes (LEDs) for General Illumination Update 2002: Full Edition (Optoelectronics Industry Development Association) (2002).
  • [94]
    J.Y. Tsao, Solid-state lighting: lamps, chips, and materials for tomorrow, IEEE Circuits Devices Mag. (USA) 20, 2837 (2004).
  • [95]
    J.Y. Tsao, Solid-state lighting: lamps, chips and materials for tomorrow, in: Proceedings of the 2005 Conference on Lasers and Electro-Optics, Cleo, Vol. 1 (2005), p. 143.
  • [96]
    K. Ueda, H. Hiramatsu, M. Hirano, T. Kamiya, and H. Hosono, Wide-gap layered oxychalcogenide semiconductors: materials, electronic structures and optoelectronic properties, Thin Solid Films (Switzerland) 496, 815 (2006).
  • [97]
    A. Usui, H. Sunakawa, A. Sakai, and A. Yamaguchi, Thick gan epitaxial growth with low dislocation density by hydride vapor phase epitaxy, Jpn. J. Appl. Phys. 2, Lett. (Japan) 36, L899902 (1997).
  • [98]
    A. Waag, F. Fischer, H. Lugauer, T. Litz, J. Laubender, U. Lunz, U. Zehnder, W. Ossau, T. Gerhardt, M. Moller, and G. Landwehr, Molecular-beam epitaxy of beryllium-chalcogenide-based thin films and quantum-well structures., J. Appl. Phys. 80, 792796 (1996).
  • [99]
    P. Waltereit, O. Brandt, A. Trampert, H. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. Ploog, Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes., Nature 406, 865868 (2000).
  • [100]
    C. Weisbuch and H. Benisty, Progress in the control of the light-matter interaction in semiconductors., Solid State Commun. (USA) 135, 627637 (2005).
  • [101]
    J. Wierer, M. Krames, J. Epler, N. Gardner, M. Craford, J. Wendt, J. Simmons, and M. Sigalas, InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures, Appl. Phys. Lett. 84, 38853887 (2004).
  • [102]
    A. Wright and U. Grossner, The effect of doping and growth stoichiometry on the core structure of a threading edge dislocation in GaN, Appl. Phys. Lett. 73, 27512753 (1998).
  • [103]
    H. Wu, X. Zhang, C. Guo, R. Xu, M. Wu, and Q. Su, Three-band white light from InGaN-based blue LED chip precoated with green/red phosphors, IEEE Photonics Technol. Lett. (USA) 17, 11601162 (2005).
  • [104]
    J.L. Wu, G. Gundiah, and A. Cheetham, Structure-property correlations in Ce-doped garnet phosphors for use in solid state lighting, Chem. Phys. Lett. 441, 250254 (2007).
  • [105]
    J. You and H. Johnson, Effect of screw dislocation density on optical properties in n-type wurtzite GaN, J. Appl. Phys. 101, 023516 (2007).
  • [106]
    Z. Yu, D. Eason, C. Boney, J. Ren, W. Hughes, W. Rowland, J. Cook, J. Schetzina, G. Cantwell, and W. Harsch, High-brightness II-VI light-emitting diodes grown by molecular-beam epitaxy on ZnSe substrates., J. Vac. Sci. Technol. B, Microelectron. Nanometer Struct. (USA) 13, 711715 (1995).
  • [107]
    L. Zhang, X. Guo, T. Liang, X. Gu, Q. Lin, and G. Shen, Color rendering and luminous efficacy of trichromatic and tetrachromatic LED-based white LEDs, Microelectron. J. (UK) 38, 16 (2007).
  • [108]
    D.-S. Zheng, K.-Y. Qian, and Y. Luo, Fabrication and luminescence characteristics studies of the high-power white LEDs with low Tc and high Ra, Guangdianzi Jiguang/J. Optoelectron. Laser 17, 14221426 (2006).
  • [109]
    M. Zorn, H. Wenzel, U. Zeimer, B. Sumpf, G. Erbert, and M. Weyers, High-power red laser diodes grown by MOVPE, J. Cryst. Growth (Netherlands) 298, 667671 (2007).
  • [110]
    A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M.S. Shur, Optimization of white polychromatic semiconductor lamps, Appl. Phys. Lett. 80, 234236 (2002).
  • [111]
    A. Zukauskas, M.S. Shur, and R. Caska, (2002) Introduction to Solid-State Lighting (John Wiley and Sons, Inc., New York).