• [1]
    S.M. Kahn, Recent progress in X-ray spectroscopy of astrophysical plasmas, Phys. Scr. T 80a, 2327 (1999).
  • [2]
    J. Galayda, LCLS [cited; available from:] (2008).
  • [3]
    J. Stöhr, NEXAFS Spectroscopy (Springer, Berlin-Heidelberg, 1996).
  • [4]
    C. Bressler and M. Chergui, Ultrafast X-ray absorption spectroscopy, Chem. Rev. 104(4), 17811812 (2004).
  • [5]
    D.C. Koningsberger and R. Prins, X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES (John Wiley and Sons, New York, 1988).
  • [6]
    C.J. Sparks, Inelastic Resonance Emission of X-Rays – Anomalous Scattering Associated with Anomalous Dispersion, Phys. Rev. Lett. 33(5), 262265 (1974).
  • [7]
    K. Siegbahn, Electron Spectroscopy for Chemical Analysis (ESCA), Philos. Trans. R. Soc. Lond. A, Math. Phys. Sci. 268(1184), 33 (1970).
  • [8]
    Md. Broglie, Sur une nouveau procédé permettant d'obtenir la photographie des spectres de raies des rayons Röntgen, Comptes Rendus 157, 924926 (1913).
  • [9]
    B.W. Adams, M.F. DeCamp, E.M. Dufresne, and D.A. Reis, Picosecond laser-pump, X-ray probe spectroscopy of GaAs, Rev. Sci. Instrum. 73(12), 41504156 (2002).
  • [10]
    J.L. Gardea-Torresdey, N.E. Pingitore, G. Meitzner, and R. Chianelli, Special issue, X-ray absorption spectroscopy, Preface, Microchem. J. 71(2–3), 9799 (2002).
  • [11]
    F. de Groot, High resolution X-ray emission and X-ray absorption spectroscopy, Chem. Rev. 101(6), 17791808 (2001).
  • [12]
    I.V. Schweigert and S. Mukamel, Coherent ultrafast core-hole correlation spectroscopy: X-ray analogues of multidimensional NMR, Phys. Rev. Lett. 99(16), 163001 (2007).
  • [13]
    D. Bazin and L. Guczi, Soft X-ray absorption spectroscopy in heterogeneous catalysis, Appl. Catal. A, Gen. 213(2), 147162 (2001).
  • [14]
    L.X. Chen, Probing transient molecular structures in photochemical processes using laser-initiated time-resolved X-ray absorption spectroscopy, Annu. Rev. Phys. Chem. 56, 221254 (2005).
  • [15]
    D.C. Koningsberger and R. Prins, X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES (Wiley, New York, 1988).
  • [16]
    C.R. Natoli, M. Benfatto, S. Della Longa, and K. Hatada, X-ray absorption spectroscopy: state-of-the-art analysis, J. Synchrotron Radiat. 10, 2642 (2003).
  • [17]
    L.J. Que, Physical Methods in Bioinorganic Chemistry (University Science Books, Sausalito, CA, 2000).
  • [18]
    F. Shan, V. Couch, and T. Guo, Atomic tungsten for ultrafast hard X-ray generation, J. Phys. Chem. A 109(19), 42164220 (2005).
  • [19]
    F. Shan and T. Guo, Ultrafast selected-energy X-ray absorption spectroscopy investigations of Ni and Zn species, J. Chem. Phys. 122(24), 244710 (2005).
  • [20]
    O.V. Safonova, M. Tromp, J.A. van Bokhoven, F.M.F. de Groot, J. Evans, and P. Glatzel, Identification of CO adsorption sites in supported Pt catalysts using high-energy-resolution fluorescence detection X-ray spectroscopy, J. Phys. Chem. B 110(33), 1616216164 (2006).
  • [21]
    F. Shan, J.D. Carter, V. Ng, and T. Guo, Ultrafast selected energy X-ray absorption spectroscopy (USEXAS) with a laser-driven X-ray source, SPIE 5340, 23 (2004).
  • [22]
    T. Lee, Y. Jiang, C. Rose-Petruck, and F. Benesch, Ultrafast tabletop laser-pump-X-ray probe measurement of solvated Fe(CN)(6)(4-) J. Chem. Phys. 122(8), 84506 (2005).
  • [23]
    I.V. Tomov and P.M. Rentzepis, Ultrafast X-ray determination of transient structures in solids and liquids Chem. Phys. 299(2–3), 203213 (2004).
  • [24]
    J. Stöhr, Geometry and bond lengths of chemisorbed atoms and molecules – NEXAFS and SEXAFS, Z. Phys. B, Cond. Matter 61(4), 439445 (1985).
  • [25]
    J. Kutzner, H. Witte, M. Silies, T. Haarlammert, J. Huve, G. Tsilimis, I. Uschmann, E. Forster, and H. Zacharias, Laser-based, high repetition rate, ultrafast X-ray source, Surf. Interf. Anal. 38(6), 10831089 (2006).
  • [26]
    K. Kashimoto, Y. Takata, T. Matsuda, N. Ikeda, H. Matsubara, T. Takiue, M. Aratono, H. Tanida, and I. Watanabe, Study on the surface density of surface-active substances through total-reflection X-ray absorption fine structure measurement, Langmuir 22(20), 84038408 (2006).
  • [27]
    A.I. Frenkel and G.V. Korshin, Studies of Cu(II) in soil by X-ray absorption spectroscopy, Can. J. Soil Sci. 81(3), 271276 (2001).
  • [28]
    G. Pretzler, T. Schlegel, and E. Fill, Characterization of electron beam propagation through foils by innershell X-ray spectroscopy, Laser Part. Beams 19(1), 9197 (2001).
  • [29]
    U. Bergmann, P. Glatzel, J.H. Robblee, J. Messinger, C. Fernandez, R. Cinco, H. Visser, K. McFarlane, E. Bellacchio, S. Pizarro, K. Sauer, V.K. Yachandra, M.P. Klein, B.L. Cox, K.H. Nealson, and S.P. Cramer, High-resolution X-ray spectroscopy of rare events: a different look at local structure and chemistry, J. Synchrotron Radiat. 8, 199203 (2001).
  • [30]
    J. Guo, T. Tong, L. Svec, J. Go, C. Dong, and J.W. Chiou, Soft-X-ray spectroscopy experiment of liquids J. Vac. Sci. Technol. A 25(4), 12311233 (2007).
  • [31]
    J.H. Guo, Y. Luo, A. Augustsson, S. Kashtanov, J.E. Rubensson, D.K. Shuh, H. Agren, and J. Nordgren, Molecular structure of alcohol-water mixtures, Phys. Rev. Lett. 91(15), 157401 (2003).
  • [32]
    K. Hamalainen, D.P. Siddons, J.B. Hastings, and L.E. Berman, Elimination of the inner-shell lifetime broadening in X-ray-absorption spectroscopy, Phys. Rev. Lett. 67(20), 28502853 (1991).
  • [33]
    H. Hayashi, R. Takeda, Y. Udagawa, T. Nakamura, H. Miyagawa, H. Shoji, S. Nanao, and N. Kawamura, Lifetime-broadening-suppressed/free XANES spectroscopy by high-resolution resonant inelastic X-ray scattering, Phys. Rev. B 68(4), 045122 (2003).
  • [34]
    U. Bergmann, D. Nordlund, P. Wernet, M. Odelius, L.G.M. Pettersson, and A. Nilsson, Isotope effects in liquid water probed by X-ray Raman spectroscopy, Phys. Rev. B 76(2), 024202 (2007).
  • [35]
    G.S. Brown, M.H. Chen, B. Crasemann, and G.E. Ice, Observation of the Auger resonant Raman effect, Phys. Rev. Lett. 45(24), 19371940 (1980).
  • [36]
    F. Gel'mukhanov and H. Agren, Resonant X-ray Raman scattering, Phys. Rep.-Rev., Phys. Lett. 312(3–6), 91 (1999).
  • [37]
    M. Magnuson, J. Guo, C. Sathe, J.E. Rubensson, J. Nordgren, P. Glans, L. Yang, P. Salek, and H. Agren, Competition between decay and dissociation of core-excited carbonyl sulfide studied by X-ray scattering, Phys. Rev. A 59(6), 42814287 (1999).
  • [38]
    J.E. Castle, A wizard source of expertise in XPS, Surf. Interface Anal. 33(3), 196202 (2002).
  • [39]
    A. Vollmer, J.D. Lipp, H. Weiss, R. O'Malley, and T. Rayment, In situ investigations into chemical processes by electron-energy-resolved X-ray absorption spectroscopy, Angew. Chem., Int. Ed. 43(28), 36913695 (2004).
  • [40]
    T. Rayment, S.L.M. Schroeder, G.D. Moggridge, J.E. Bateman, G.E. Derbyshire, and R. Stephenson, Electron-yield X-ray absorption spectroscopy with gas microstrip detectors, Rev. Sci. Instrum. 71(10), 36403645 (2000).
  • [41]
    J. Hasegawa, T. Tada, Y. Oguri, M. Hayashi, T. Toriyama, T. Kawabata, and K. Masai, Development of a high-efficiency high-resolution particle-induced X-ray emission system for chemical state analysis of environmental samples, Rev. Sci. Instrum. 78(7), 073105 (2007).
  • [42]
    G. Zeger, D. Plachke, H.D. Carstanjen, and H.R. Trebin, Quasicrystalline d-AlCuCo identified as random tiling by ion channeling combined with particle-induced X-ray emission, Phys. Rev. Lett. 82(26), 52735276 (1999).
  • [43]
    A. Fohlisch, Ultrafast charge transfer and nuclear dynamics studied with resonant X-ray spectroscopy, Appl. Phys. A, Mater. Sci. Process. 85(4), 351359 (2006).
  • [44]
    SLAC. LCLS Conceptual Design Report (Stanford Linear Accelerator Center, Stanford, 2002).
  • [45]
    R.W. Schoenlein, S. Chattopadhyay, H.H.W. Chong, T.E. Glover, P.A. Heimann, C.V. Shank, A.A. Zholents, and M.S. Zolotorev, Generation of femtosecond pulses of synchrotron radiation, Science 287(5461), 22372240 (2000).
  • [46]
    L.X. Chen, X.Y. Zhang, E.C. Wasinger, K. Attenkofer, G. Jennings, A.Z. Muresan, and J.S. Lindsey, Tracking electrons and atoms in a photoexcited metalloporphyrin by X-ray transient absorption spectroscopy, J. Am. Chem. Soc. 129(31), 9616 (2007).
  • [47]
    T. Ressler, Application of time-resolved in-situ X-ray absorption spectroscopy in solid-state chemistry, Anal. Bioanal. Chem. 376(5), 584593 (2003).
  • [48]
    G.J. Cheng, F. Shan, A. Freyer, and T. Guo, Compact 50-Hz terawatt Ti:sapphire laser for X-ray and nonlinear optical spectroscopy, Appl. Opt. 41(24), 51485154 (2002).
  • [49]
    T. Guo, C. Spielmann, B.C. Walker, and C.P.J. Barty, Generation of hard X-rays by ultrafast terawatt lasers Rev. Sci. Instrum. 72(1 PT1), 4147 (2001).
  • [50]
    S. Fourmaux, L. Lecherbourg, M. Harmand, M. Servol, and J.C. Kieffer, High repetition rate laser produced soft X-ray source for ultrafast X-ray absorption near edge structure measurements, Rev. Sci. Instrum. 78(11), 113104 (2007).
  • [51]
    P. Forget, F. Dorchies, J.C. Kieffer, and O. Peyrusse, Ultrafast broadband laser-plasma X-ray source for femtosecond time-resolved EXAFS, Chem. Phys. 299(2–3), 259263 (2004).
  • [52]
    I.V. Tomov, J. Chen, X. Ding, and P.M. Rentzepis, Efficient focusing of hard X-rays generated by femtosecond laser driven plasma, Chem. Phys. Lett. 389(4–6), 363366 (2004).
  • [53]
    D. Boschetto, G. Mourou, A. Rousse, A. Mordovanakis, B.X. Hou, J. Nees, D. Kumah, and R. Clarke, Spatial coherence properties of a compact and ultrafast laser-produced plasma keV X-ray source, Appl. Phys. Lett. 90(1), 011106 (2007).
  • [54]
    M. Chen, J.W. Chen, H.Y. Gao, P.X. Lu, and Z.Z. Xu, Characteristics of ultrafast K line hard X-ray source from femtosecond terawatt laser-produced plasma, Chin. Phys. 12(1), 5559 (2003).
  • [55]
    H. Witte, M. Silies, T. Haarlammert, J. Huve, J. Kutzner, and H. Zacharias, Multi-kilohertz, ultrafast hard X-ray K-alpha source, Appl. Phys. B, Lasers Opt. 90(1), 1114 (2008).
  • [56]
    Y. Jiang, T. Lee, and C. Rose-Petruck, Generation of ultrashort hard-X-ray pulses with tabletop laser systems at a 2-kHz repetition rate, J. Opt. Soc. Amer. B, Opt. Phys. 20(1), 229237 (2003).
  • [57]
    N. Zhavoronkov, K.V.K. Schmising, M. Bargheer, M. Woerner, T. Elsaesser, O. Klimo, and J. Limpouch, High repetition rate ultrafast X-ray source from the fs-laser-produced-plasma, J. Phys. IV 133, 12011203 (2006).
  • [58]
    W. Fullagar, M. Harbst, S. Canton, J. Uhlig, M. Walczak, C.G. Wahlstrom, and V. Sundstrom, A broadband laser-plasma X-ray source for application in ultrafast chemical structure dynamics, Rev. Sci. Instrum. 78(11), 115105 (2007).
  • [59]
    N. Uesugi, H. Nakano, T. Nishikawa, and P. Lu, Efficient soft X-ray generation from femtosecond-laser-produced plasma and its application to time resolved spectroscopy. Journal de Physique IV., 11(Pr2), 397403 (2001).
  • [60]
    C. Reich, C.M. Laperle, X.D. Li, B. Ahr, F. Benesch, and C.G. Rose-Petruck, Ultrafast X-ray pulses emitted from a liquid mercury laser target, Opt. Lett. 32(4), 427429 (2007).
  • [61]
    N. Zhavoronkov, Y. Gritsai, G. Korn, and T. Elsaesser, Ultra-short efficient laser-driven hard X-ray source operated at a kHz repetition rate, Appl. Phys. B, Lasers Opt. 79(6), 663667 (2004).
  • [62]
    D.J. Gibson, S.G. Anderson, C.P.J. Barty, S.M. Betts, R. Booth, W.J. Brown, J.K. Crane, R.R. Cross, D.N. Fittinghoff, F.V. Hartemann, J. Kuba, G.P. Le Sage, D.R. Slaughter, A.M. Tremaine, A.J. Wootton, E.P. Hartouni, P.T. Springer, and J.B. Rosenzweig, PLEIADES: A picosecond Compton scattering X-ray source for advanced backlighting and time-resolved material studies, Phys. Plasmas 11(5), 28572864 (2004).
  • [63]
    F.V. Hartemann, A.M. Tremaine, S.G. Anderson, C.P.J. Barty, S.M. Betts, R. Booth, W.J. Brown, J.K. Crane, R.R. Cross, D.J. Gibson, D.N. Flittinghoff, J. Kuba, G.P. Le Sage, D.R. Slaughter, A.J. Wootton, E.P. Hartouni, P.T. Springer, J.B. Rosenweig, and A.K. Kerman, Characterization of a bright, tunable, ultrafast Compton scattering X-ray source, Laser Part. Beams 22(3), 221244 (2004).
  • [64]
    T. Tschentscher, Investigation of ultrafast processes using X-ray free-electron laser radiation, Chem. Phys. 299(2–3), 271276 (2004).
  • [65]
    F. Albert, K. TaPhuoc, R. Shah, F. Burgy, J.P. Rousseau, and A. Rousse, Polychromatic X-ray beam from the acceleration of energetic electrons in ultrafast laser-produced plasmas, Astrophys. Space Sci. 307(1–3), 329333 (2007).
  • [66]
    D.A. Oulianov, R.A. Crowell, D.J. Gosztola, and Y. Li, Femtosecond Thomson scattering X-ray source based on laser wakefield accelerator for ultrafast X-ray absorption spectroscopy, Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At. 241(1–4), 8286 (2005).
  • [67]
    L.X. Chen, W.J.H. Jager, G. Jennings, D.J. Gosztola, A. Munkholm, and J.P. Hessler, Capturing a photoexcited molecular structure through time-domain X-ray absorption fine structure, Science 292(5515), 262264 (2001).
  • [68]
    S.L. Johnson, P.A. Heimann, A.M. Lindenberg, H.O. Jeschke, M.E. Garcia, Z. Chang, R.W. Lee, J.J. Rehr, and R.W. Falcone, Properties of liquid silicon observed by time-resolved X-ray absorption spectroscopy, Phys. Rev. Lett. 91(15), 157403 (2003).
  • [69]
    V.T. Pham, W. Gawelda, Y. Zaushitsyn, M. Kaiser, D. Grolimund, S.L. Johnson, R. Abela, C. Bressler, and M. Chergui, Observation of the solvent shell reorganization around photoexcited atomic solutes by picosecond X-ray absorption spectroscopy, J. Am. Chem. Soc. 129(6), 1530 (2007).
  • [70]
    E.A. Gibson, A. Paul, N. Wagner, R. Tobey, S. Backus, I.P. Christov, M.M. Mumane, and H.C. Kapteyn, High-order harmonic generation up to 250 eV from highly ionized argon, Phys. Rev. Lett. 92(3), 033001 (2004).
  • [71]
    M. Schultze, E. Goulielmakis, M. Uiberacker, M. Hofstetter, J. Kim, D. Kim, F. Krausz, and U. Kleinberg, Powerful 170-attosecond XUV pulses generated with few-cycle laser pulses and broadband multilayer optics, New J. Phys. 9 243 (2007).
  • [72]
    I.P. Christov, M.M. Murnane, and H.C. Kapteyn, High-harmonic generation of attosecond pulses in the “single-cycle” regime, Phys. Rev. Lett. 78(7), 12511254 (1997).
  • [73]
    M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, C. Spielmann, G.A. Reider, P.B. Corkum, and F. Krausz, X-ray pulses approaching the attosecond frontier, Science 291(5510), 19231927 (2001).
  • [74]
    E. Seres, J. Seres, and C. Spielmann, X-ray absorption spectroscopy in the keV range with laser generated high harmonic radiation, Appl. Phys. Lett. 89(18), 181919 (2006).
  • [75]
    E. Gagnon, P. Ranitovic, X.M. Tong, C.L. Cocke, M.M. Murnane, H.C. Kapteyn, and A.S. Sandhu, Soft X-ray-driven femtosecond molecular dynamics, Science 317(5843), 13741378 (2007).
  • [76]
    D. Nordlund, H. Ogasawara, H. Bluhm, O. Takahashi, M. Odelius, M. Nagasono, L.G.M. Pettersson, and A. Nilsson, Probing the electron delocalization in liquid water and ice at attosecond time scales, Phys. Rev. Lett. 99(21), 217406 (2007).
  • [77]
    A.L. Cavalieri, N. Muller, T. Uphues, V.S. Yakovlev, A. Baltuska, B. Horvath, B. Schmidt, L. Blumel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P.M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, Attosecond spectroscopy in condensed matter, Nature 449(7165), 10291032 (2007).
  • [78]
    M. Uiberacker, T. Uphues, M. Schultze, A.J. Verhoef, V. Yakovlev, M.F. Kling, J. Rauschenberger, N.M. Kabachnik, H. Schroder, M. Lezius, K.L. Kompa, H.G. Muller, M.J.J. Vrakking, S. Hendel, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, Attosecond real-time observation of electron tunnelling in atoms, Nature 446(7136), 627632 (2007).
  • [79]
    T. Kanai, E.J. Takahashi, Y. Nabekawa, and K. Midorikawa, Observing the attosecond dynamics of nuclear wavepackets in molecules by using high harmonic generation in mixed gases, New J. Phys. 10 025036 ( 2008).
  • [80]
    S. Baker, J.S. Robinson, C.A. Haworth, C.C. Chirila, M. Lein, J.W.G. Tisch, and J.P. Marangos, Probing fast nuclear wavepackets in light molecules: monitoring structural rearrangement on an attosecond timescale, J. Mod. Opt. 54(7), 10111017 (2007).
  • [81]
    P.H. Bucksbaum, The future of attosecond spectroscopy (vol 317, pg 766, 2007), Science 318(5849), 393 (2007).
  • [82]
    P.H. Bucksbaum, The future of attosecond spectroscopy, Science 317(5839), 766769 (2007).
  • [83]
    H. Kapteyn, O. Cohen, I. Christov, and M. Murnane, Harnessing attosecond science in the quest for coherent X-rays, Science 317(5839), 775778 (2007).
  • [84]
    H. Niikura and P.B. Corkum, Attosecond and Angstrom science. Advances in Atomic Molecular and Optical Physics, Vol 54 54, 511548 (2007).
  • [85]
    J. Harada, The role of development of the rotating-anode X-ray generator and the use of imaging plates in powder diffractometer instrumentation, J. Chem. Educ. 78(5), 607612 (2001).
  • [86]
    B. Kim, B. Verman, and L. Jiang, Performance stability of microfocusing source and multilayer optics based X-ray diffraction system. European Powder Diffraction Epdic 8 443–4, 159162 (2004).
  • [87]
    E. Forster, R. Butzbach, H. Daido, Y. Kato, F. Koike, S. Sebban, I. Uschmann, and M. Vollbrecht, High resolution X-ray spectroscopy of laser-produced plasmas, X-Ray Lasers 159, 459462 (1999).
  • [88]
    D.J. Vine, D.M. Paganin, K.M. Pavlov, J. Krausslich, O. Wehrhan, I. Uschmann, and E. Forster, Analyzer-based phase contrast imaging and phase retrieval using a rotating-anode X-ray source, Appl. Phys. Lett. 91(25), 254110 (2007).
  • [89]
    A. Tkachuk, F. Duewer, H.T. Cui, M. Feser, S. Wang, and W.B. Yun, X-ray computed tomography in Zernike phase contrast mode at 8 keV with 50-nm resolution using Cu rotating-anode X-ray source, Z. Kristallogr. 222(11), 650655 (2007).
  • [90]
    S.R. Sutton, M. Newville, M.L. Rivers, P. Eng, and A. Lanzirotti, X-ray fluorescence microprobes using microfocusing mirrors, Geochim. Cosmochim. Acta 69(10), A51 (2005).
  • [91]
    A. Rousse, C. Rischel, and J.C. Gauthier, Colloquium: Femtosecond X-ray crystallography, Rev. Mod. Phys. 73(1), 1731 (2001).
  • [92]
    D. Chettle, X-ray spectroscopy in medicine. X-Ray Spectrometry 37(1), 12 (2008).
  • [93]
    L. Young, D.A. Arms, E.M. Dufresne, R.W. Dunford, D.L. Ederer, C. Hohr, E.P. Kanter, B. Krassig, E.C. Landahl, E.R. Peterson, J. Rudati, R. Santra, and S.H. Southworth, X-ray microprobe of orbital alignment in strong-field ionized atoms, Phys. Rev. Lett. 97(8), 083601 (2006).
  • [94]
    S.H. Southworth, D.A. Arms, E.M. Dufresne, R.W. Dunford, D.L. Ederer, C. Hohr, E.P. Kanter, B. Krassig, E.C. Landahl, E.R. Peterson, J. Rudati, R. Santra, D.A. Walko, and L. Young, K-edge X-ray-absorption spectroscopy of laser-generated Kr+ and Kr2+, Phys. Rev. A 76(4), 043421 (2007).
  • [95]
    C.G. Elles, I.A. Shkrob, R.A. Crowell, D.A. Arms, and E.C. Landahl, Transient X-ray absorption spectroscopy of hydrated halogen atom, J. Chem. Phys. 128(6), 061102 (2008).
  • [96]
    C. Dallera, O. Wessely, M. Colarieti-Tosti, O. Eriksson, R. Ahuja, B. Johansson, M.I. Katsnelson, E. Annese, J.P. Rueff, G. Vanko, L. Braicovich, and M. Grionil, Understanding mixed valent materials: Effects of dynamical core-hole screening in high-pressure X-ray spectroscopy, Phys. Rev. B 74(8), 081101 (2006).
  • [97]
    L. Journel, R. Guillemin, W.C. Stolte, S. Carniato, R. Taieb, I. Minkov, F. Gel'mukhanov, P. Salek, H. Agren, A. Hudson, D.W. Lindle, and M. Simon, Ultrafast nuclear motion in Cl 1s core-excited HCl and DCl probed by resonant inelastic X-ray scattering: Experiment and theory, J. Electron Spectrosc. Relat. Phenom. 156, 44 (2007).
  • [98]
    W. Bu, P.J. Ryan, and D. Vaknin, Ion distributions at charged aqueous surfaces by near-resonance X-ray spectroscopy, J. Synchrotron Radiat. 13, 459463 (2006).
  • [99]
    I. Jarrige, H. Ishii, Y.Q. Cai, J.P. Rueff, C. Bonnelle, T. Matsumura, and S.R. Shieh, Valence state of Tm in TmX (X=S,Se,Te) investigated by resonant inelastic X-ray scattering, Phys. Rev. B 72(7), 075122 (2005).
  • [100]
    J.C. Andrews, Mercury speciation in the environment using X-ray absorption spectroscopy, Recent Dev. Mercury Sci. 120, 135 (2006).
  • [101]
    C.J. Doonan, L.M. Zhang, C.G. Young, S.J. George, A. Deb, U. Bergmann, G.N. George, and S.P. Cramer, High-resolution X-ray emission spectroscopy of molybdenum compounds, Inorg. Chem. 44(8), 25792581 (2005).
  • [102]
    F. Shan, J.D. Carter, and T. Guo, Damage of supercoiled DNA by an ultrafast laser-driven electron X-ray source, Opt. Express 15(2), 754759 (2007).
  • [103]
    V. Simonet, Y. Calzavara, J.L. Hazemann, R. Argoud, O. Geaymond, and D. Raoux, Structure of aqueous ZnBr2 solution probed by X-ray absorption spectroscopy in normal and hydrothermal conditions, J. Chem. Phys. 116(7), 29973006 (2002).
  • [104]
    P. Pospisil, M. Haumann, J. Dittmer, V.A. Sole, and H. Dau, Stepwise transition of the tetra-manganese complex of photosystem II to a binuclear Mn-2(mu-O)(2) complex in response to a temperature jump: A time-resolved structural investigation employing X-ray absorption spectroscopy, Biophys. J. 84(2), 13701386 (2003).
  • [105]
    T. Yokoyama, K. Takahashi, and O. Sato, Metastable photoinduced phase of Cu(II) ethylenediamine complexes studied by X-ray-absorption fine-structure spectroscopy, Phys. Rev. B 67(17), 172104 (2003).
  • [106]
    S. Della Longa, A. Arcovito, M. Benfatto, A. Congiu-Castellano, M. Girasole, J.L. Hazemann, and A. Lo Bosco, Redox-induced structural dynamics of Fe-heme ligand in myoglobin by X-ray absorption spectroscopy, Biophys. J. 85(1), 549558 (2003).
  • [107]
    F. Shan, J. Carter, V. Ng, and T. Guo, Laser-driven hard-X-ray generation based on ultrafast selected-energy X-ray absorption spectroscopy measurements of Ni compounds, Phys. Rev. E 71(2), 025401 (2005). .
  • [108]
    E. Salomon, N. Papageorgiou, T. Angot, A. Verdini, A. Cossaro, L. Floreano, and A. Morgante, L. Giovanelli, and G. Le Lay, Lead phthalocyanine films by near edge X-ray absorption fine structure spectroscopy, J. Phys. Chem. C 111(33), 1246712471 (2007).
  • [109]
    T. Glaser, B. Hedman, K.O. Hodgson, and E.I. Solomon, Ligand K-edge X-ray absorption spectroscopy: A direct probe of ligand-metal covalency, Acc. Chem. Res. 33(12), 859868 (2000).
  • [110]
    L. Nugent-Glandorf, M. Scheer, D.A. Samuels, V. Bierbaum, and S.R. Leone, A laser-based instrument for the study of ultrafast chemical dynamics by soft X-ray-probe photoelectron spectroscopy, Rev. Sci. Instrum. 73(4), 18751886 (2002).
  • [111]
    L. Nugent-Glandorf, M. Scheer, D.A. Samuels, V.M. Bierbaum, and S.R. Leone, Ultrafast photodissociation of Br-2: Laser-generated high-harmonic soft X-ray probing of the transient photoelectron spectra and ionization cross sections, J. Chem. Phys. 117(13), 61086116 (2002).
  • [112]
    L. Chen, G. Shaw, I. Novozhilova, T. Liu, G. Jennings, K. Attenkofer, G.J. Meyer, and P. Coppens, MLCT state structure and dynamics of a copper(I) diimine complex characterized by pump-probe X-ray and laser spectroscopies and DFT calculations, J. Am. Chem. Soc. 125(23), 70227034 (2003).
  • [113]
    T. Lee, Y. Jiang, C.G. Rose-Petruck, and F. Benesch, Ultrafast tabletop laser-pump-X-ray probe measurement of solvated Fe(CN)(6)(4-), J. Chem. Phys. 122(8), 084506 (2005).
  • [114]
    F. Benesch, T.W. Lee, Y. Jiang, and C.G. Rose-Petruck, Ultrafast laser-driven X-ray spectrometer for X-ray absorption spectroscopy of transition-metal complexes, Opt. Lett. 29(9), 10281030 (2004).
  • [115]
    W. Gawelda, A. Cannizzo, and V.T. Pham, A. El Nahhas, C.J. Milne, R. van der Veen, C. Bressler, and M. Chergui, Light-induced spin crossover probed by ultrafast optical and X-ray spectroscopies, Chimia 61(4), 179183 (2007).
  • [116]
    W. Gawelda, A. Cannizzo, V.T. Pham, F. van Mourik, C. Bressler, and M. Chergui, Ultrafast nonadiabatic dynamics of [Fe-II(bpy)(3)](2+) in solution, J. Am. Chem. Soc. 129(26), 81998206 (2007).
  • [117]
    W. Gawelda and M. Johnson, F.M.F. de Groot, R. Abela, C. Bressler, and M. Chergui, Electronic and molecular structure of photoexcited [Ru-II(bpy)(3)](2+) probed by picosecond X-ray absorption spectroscopy, J. Am. Chem. Soc. 128(15), 50015009 (2006).
  • [118]
    W. Gawelda, V.T. Pham, M. Benfatto, Y. Zaushitsyn, M. Kaiser, D. Grolimund, S.L. Johnson, R. Abela, A. Hauser, C. Bressler, and M. Chergui, Structural determination of a short-lived excited iron(II) complex by picosecond X-ray absorption spectroscopy, Phys. Rev. Lett. 98(5), 057401 (2007).
  • [119]
    M. Khalil, M.A. Marcus, A.L. Smeigh, J.K. McCusker, H.H.W. Chong, and R.W. Schoenlein, Picosecond X-ray absorption spectroscopy of a photoinduced iron(II) spin crossover reaction in solution, J. Phys. Chem. A 110(1), 3844 (2006).
  • [120]
    M. Saes, C. Bressler, R. Abela, D. Grolimund, S.L. Johnson, P.A. Heimann, and M. Chergui, Observing photochemical transients by ultrafast X-ray absorption spectroscopy, Phys. Rev. Lett. 90(4), 047403 (2003).
  • [121]
    M. Saes, C. Bressler, F. van Mourik, W. Gawelda, M. Kaiser, M. Chergui, C. Bressler, D. Grolimund, R. Abela, T.E. Glover, P.A. Heimann, R.W. Schoenlein, S.L. Johnson, A.M. Lindenberg, and R.W. Falcone, A setup for ultrafast time-resolved X-ray absorption spectroscopy, Rev. Sci. Instrum. 75(1), 2430 (2004).
  • [122]
    D.A. Oulianov, I.V. Tornov, A.S. Dvornikov, and P.M. Rentzepis, Structures of bromoalkanes' photodissociation in solution by means of ultrafast extended X-ray absorption fine-structure spectroscopy, Proc. Natl. Acad. Sci. USA 99(20), 1255612561 (2002).
  • [123]
    J. Chen, H. Zhang, I.V. Tomov, and P.M. Rentzepis, Electron transfer mechanism and photochemistry of ferrioxalate induced by excitation in the charge transfer band, Inorg. Chem. 47(6), 20242032 (2008).
  • [124]
    J. Chen, H. Zhang, I.V. Tomov, M. Wolfsherg, X.L. Ding, and P.M. Rentzepis, Transient structures and kinetics of the ferrioxalate redox reaction studied by time-resolved EXAFS, optical spectroscopy, and DFT, J. Phys. Chem. A 111(38), 93269335 (2007).
  • [125]
    J.E. Penner-Hahn, X-ray absorption spectroscopy in coordination chemistry, Coord. Chem. Rev. 192, 11011123 (1999).
  • [126]
    B.C. McClaine, S.E. Siporin, and R.J. Davis, X-ray and IR spectroscopy of barium-promoted, zeolite-supported ruthenium catalysts for ammonia synthesis, J. Phys. Chem. B 105(31), 75257532 (2001).
  • [127]
    H.M. Chen, R.S. Liu, K. Asakura, L.Y. Jang, and J.F. Lee, Controlling length of gold nanowires with large-scale: X-ray absorption spectroscopy approaches to the growth process, J. Phys. Chem. C 111(50), 1855018557 (2007).
  • [128]
    P.S.G. Kim, Y.H. Tang, T.K. Sham, and S.T. Lee, Condensation of silicon nanowires from silicon monoxide by thermal evaporation – An X-ray absorption spectroscopy investigation, Can. J. Chem., Rev. Can. Chim. 85(10), 695701 (2007).
  • [129]
    J.J. Inukai, D.X. Cao, A. Wieckowski, K.C. Chang, A. Menzel, V. Komanicky, and H. You, In situ synchrotron X-ray Spectroscopy of ruthenium nanoparticles modified with selenium for an oxygen reduction reaction, J. Phys. Chem. C 111(45), 1688916894 (2007).
  • [130]
    G. Cheng and T. Guo, Surface segregation in Ni/Co bimetallic nanoparticles produced in single-walled carbon nanotube synthesis, J. Phys. Chem. B 106(23), 58335839 (2002).
  • [131]
    J. Carter, F. Shan, and T. Guo, Determination of CoSi2 self-aligned nanostructures with grazing-incidence X-ray absorption spectroscopy, J. Phys. Chem. B 109(9), 41184122 (2005).
  • [132]
    S. Calvin, E.E. Carpenter, and V.G. Harris, Characterization of passivated iron nanoparticles by X-ray absorption spectroscopy, Phys. Rev. B 68(3), 033411 (2003).
  • [133]
    Z.Y. Wu, C.M. Liu, L. Guo, R. Hu, M.I. Abbas, T.D. Hu, and H.B. Xu, Structural characterization of nickel oxide nanowires by X-ray absorption near-edge structure spectroscopy, J. Phys. Chem. B 109(7), 25122515 (2005).
  • [134]
    C.T. Meneses, W.H. Flores, A.P. Sotero, E. Tamura, F. Garcia, and J.M. Sasaki, In situ system for X-ray absorption spectroscopy experiments to investigate nanoparticle crystallization, J. Synchrotron Radiat. 13, 468470 (2006).
  • [135]
    S. Zinoveva, R. De Silva, R.D. Louis, P. Datta, C.S.S.R. Kumar, J. Goettert, and J. Hormes, The wet chemical synthesis of Co nanoparticles in a microreactor system: A time-resolved investigation by X-ray absorption spectroscopy. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment 582(1), 239241 (2007).
  • [136]
    S.Z. Li, R.J. O'Brien, G.D. Meitzner, H. Hamdeh, B.H. Davis, and E. Iglesia, Structural analysis of unpromoted Fe-based Fischer–Tropsch catalysts using X-ray absorption spectroscopy, Appl. Catal. A, Gen. 219(1–2), 215222 (2001).
  • [137]
    W.M. Heijboer, D.C. Koningsberger, B.M. Weckhuysen, and F.M.F. de Groot, New frontiers in X-ray spectroscopy in heterogeneous catalysis: Using Fe/ZSM-5 as test-system, Catal. Today 110(3–4), 228238 (2005).
  • [138]
    G.C. Junkel-Vives, J. Abdallah, F. Blasco, C. Stenz, F. Salin, A.Y. Faenov, A.I. Magunov, T.A. Pikuz, I.Y. Skobelev, T. Auguste, P. D'Oliveira, S. Hulin, P. Monot, and S. Dobosz, High resolution X-ray spectroscopy investigations of fs laser irradiated Ar clusters by varying cluster size and laser flux density, J. Quant. Spectrosc. Radiat. Transf. 71(2–6), 417430. 2001.
  • [139]
    L. Czekaj, F. Loviat, F. Raimondi, J. Wambach, S. Biollaz, and A. Wokaun, Characterization of surface processes at the Ni-based catalyst during the methanation of biomass-derived synthesis gas: X-ray photoelectron spectroscopy (XPS), Appl. Catal. A, Gen. 329, 6878 (2007).
  • [140]
    F. Morales, F.M.F. de Groot, O.L.J. Gijzeman, A. Mens, O. Stephan, and B.M. Weckhuysen, Mn promotion effects in Co/TiO2 Fischer-Tropsch catalysts as investigated by XPS and STEM-EELS, J. Catal. 230(2), 301308 (2005).
  • [141]
    A.M. Venezia, X-ray photoelectron spectroscopy (XPS) for catalysts characterization, Catal. Today 77(4), 359370 (2003).
  • [142]
    Y.T. Lee, J.D. Mcdonald, and P.R. Lebreton, Herschba.Dr. Molecular-Beam Kinetics – Evidence for Short-Range Attraction in Halogen Atom-Molecule Exchange Reactions, J. Chem. Phys. 49(5), 2447 (1968).
  • [143]
    H. Nakano, Y. Goto, P. Lu, T. Nishikawa, and N. Uesugi, Time-resolved soft X-ray absorption spectroscopy of silicon using femtosecond laser plasma X-rays, Appl. Phys. Lett. 75(16), 23502352 (1999).
  • [144]
    S. Tzortzakis, P. Audebert, P. Renaudin, S. Bastiani-Ceccotti, J.P. Geindre, C. Chenais-Popovics, V. Nagels, S. Gary, R. Shepherd, F. Girard, I. Matsushima, O. Peyrusse, and J.C. Gauthier, Time- and space-resolved X-ray absorption spectroscopy of aluminum irradiated by a subpicosecond high-power laser, J. Quant. Spectrosc. Radiat. Transf. 99(1–3), 614626. 2006.
  • [145]
    K. Oguri, Y. Okano, T. Nishikawa, and H. Nakano, Dynamical study of femtosecond-laser-ablated liquid-aluminum nanoparticles using spatiotemporally resolved X-ray-absorption fine-structure spectroscopy, Phys. Rev. Lett. 99(16), 165003 (2007).
  • [146]
    I.Y. Skobelev, A.Y. Faenov, A.I. Magunov, T.A. Pikuz, A.S. Boldarev, V.A. Gasilov, J. Abdallach, G.C. Junkel-Vives, T. Auguste, S. Dobosz, P. d'Oliveira, S. Hulin, P. Monot, F. Blasco, F. Dorchies, T. Caillaud, C. Bonte, C. Stenz, F. Salin, P.A. Loboda, I.A. Litvinenko, V.V. Popova, G.V. Baidin, and B.Y. Sharkov, X-ray spectroscopy diagnostic of a plasma produced by femtosecond laser pulses irradiating a cluster target, J. Exp. Theor. Phys. 94(5), 966976 (2002).
  • [147]
    P. Audebert, V. Nagels, J.P. Geindre, F. Dorchies, O. Peyrusse, S. Gary, F. Girard, R. Shepherd, J.C. Gauthier, and C. Chenais-Popovics, X-ray spectroscopy of a thin foil plasma produced by a short-pulse high-intensity laser, J. Quant. Spectrosc. Radiat. Transf. 81(1–4), 1930 (2003).
  • [148]
    P. Audebert, P. Renaudin, S. Bastiani-Ceccotti, J. Geindre, C. Chenais-Popovics, S. Tzortzakis, V. Nagels-Silvert, R. Shepherd, I. Matsushima, S. Gary, F. Girard, O. Peyrusse, and J.C. Gauthier, Picosecond time-resolved X-ray absorption spectroscopy of ultrafast aluminum plasmas, Phys. Rev. Lett. 94(2), 025004 (2005).
  • [149]
    F. Shan, R. Porter, N. Cheng, D.J. Masiel, and T. Guo, Investigations of laser evaporation in ambient pressure helium with ultrafast hard X-ray pulses, J. Phys. Chem. C 111(12), 46434647 (2007).
  • [150]
    A. Wuhn, J. Weckesser, and C. Woll, Bonding and orientational ordering of long-chain carboxylic acids on Cu(111): Investigations using X-ray absorption spectroscopy, Langmuir 17(24), 76057612 (2001).
  • [151]
    S. Mullegger, K. Hanel, T. Strunskus, C. Woll, and A. Winkler, Organic molecular beam deposition of oligophenyls on Au(111): A study by X-ray absorption spectroscopy, Chemphyschem 7(12), 25522558 (2006).
  • [152]
    Y. Takahashi, N. Sakakibara, and M. Nomura, Direct determination of the “organic extent” of tin species in environmental samples by X-ray absorption near-edge structure spectroscopy, Anal. Chem. 76(15), 43074314 (2004).
  • [153]
    C.M. Whelan, M.R. Smyth, C.J. Barnes, and X.P.S. HREELS, and electrochemical study of benzenethiol adsorption on Au(111), Langmuir 15(1), 116126 (1999).
  • [154]
    J. Noh, E. Ito, K. Nakajima, J. Kim, H. Lee, and M. Hara, High-resolution STM and XPS studies of thiophene self-assembled monolayers on Au(111), J. Phys. Chem. B 106(29), 71397141 (2002).
  • [155]
    Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.G. Nothofer, J.M. Wessels, U. Wild, A. Knop-Gericke, D.S. Su, R. Schlogl, A. Yasuda, and T. Vossmeyer, Self-assembled gold nanoparticle/alkanedithiol films: Preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties, J. Phys. Chem. B 107(30), 74067413 (2003).
  • [156]
    J.P. Rueff, C.C. Kao, V.V. Struzhkin, J. Badro, J. Shu, R.J. Hemley, and H.K. Hao, Pressure-induced high-spin to low-spin transition in FeS evidenced by X-ray emission spectroscopy, Phys. Rev. Lett. 82(16), 32843287 (1999).
  • [157]
    H. Oyanagi, A. Kolobov, and K. Tanaka, Photo-induced nonthermal melting of amorphous chalcogenides observed by pump and probe X-ray absorption spectroscopy, Phase Transit. 74(1–2), 235254 (2001).
  • [158]
    K. Ishiji, T. Matsuda, H. Tokoro, T. Iwazumi, K. Hashimoto, and S.I. Ohkoshi, Observation of phase transition of cesium manganese hexacyanoferrates by X-ray absorption spectroscopy, J. Phys. Chem. Solids 68(11), 21582161 (2007).
  • [159]
    T. Mizokawa, L.H. Tjeng, H.J. Lin, C.T. Chen, S. Schuppler, S. Nakatsuji, H. Fukazawa, and Y. Maeno, Orbital state and metal-insulator transition in Ca2-xSrxRuO4 (x = 0.0 and 0.09) studied by X-ray absorption spectroscopy, Phys. Rev. B 69(13), 132410 (2004).
  • [160]
    D.E. Ramaker, M.K. Oudenhuijzen, and D.C. Koningsberger, Strong support effects on the insulator to metal transition in supported Pt clusters as observed by X-ray absorption spectroscopy, J. Phys. Chem. B 109(12), 56085617 (2005).
  • [161]
    M. Acosta-Alejandro, J.M. de Leon, M. Medarde, P. Lacorre, K. Konder, and P.A. Montano, Local lattice structure change in PrNiO3 across the metal-insulator transition: X-ray absorption near-edge structure spectroscopy and ab initio calculations, Phys. Rev. B 77(8), 085107 (2008).
  • [162]
    H. Wende, Recent advances in X-ray absorption spectroscopy, Rep. Prog. Phys. 67(12), 21052181 (2004).
  • [163]
    C. Kapusta, P. Fischer, and G. Schutz, Magnetic X-ray absorption spectroscopy, J. Alloys Compd. 286(1–2), 3746. 1999.
  • [164]
    H.A. Durr, C. Stamm, T. Kachel, N. Pontius, R. Mitziter, T. Quast, K. Holldack, S. Khan, C. Lupulescu, and W. Eberhardt, Ultrafast magnetization dynamics probed with femtosecond soft X-ray pulses, J. Electron. Spectrosc. Rel. Phenom. 156, 34 (2007).
  • [165]
    H.S. Rhie, H.A. Durr, and W. Eberhardt, Femtosecond electron and spin dynamics in Ni/W(110) films, Phys. Rev. Lett. 90(24), 247201 (2003).
  • [166]
    S.L. Johnson, P.A. Heimann, A.G. MacPhee, A.M. Lindenberg, O.R. Monteiro, Z. Chang, R.W. Lee, and R.W. Falcone, Bonding in liquid carbon studied by time-resolved X-ray absorption spectroscopy, Phys. Rev. Lett. 94(5), 057407 (2005).
  • [167]
    H.W. Nesbitt, D. Legrand, and G.M. Bancroft, Interpretation of Ni2p XPS spectra of Ni conductors and Ni insulators, Phys. Chem. Miner. 27(5), 357366 (2000).
  • [168]
    H. Dollefeld, C. McGinley, S. Almousalami, T. Moller, H. Weller, and A. Eychmuller, Radiation-induced damage in X-ray spectroscopy of CdS nanoclusters, J. Chem. Phys. 117(19), 89538958 (2002).
  • [169]
    J.D. Carter, N.N. Cheng, Y.Q. Qu, G.D. Suarez, and T. Guo, Nanoscale energy deposition by X-ray absorbing nanostructures, J. Phys. Chem. B 111(40), 1162211625 (2007).