SEARCH

SEARCH BY CITATION

References

  • [1]
    J.M. Phillips, M.E. Coltring, M.H. Crawford, A.J. Fischer, M.R. Krames, R. Mueller-Mach, G.O. Mueller, Y. Ohno, L.E.S. Rohwer, J.A. Simmons, and J.Y. Tsao, Research challenges to ultra-efficient inorganic solid-state lighting, Laser Photonics Rev. 1, 307 (2007).
  • [2]
    S. Fan, P.R. Villeneuve, J.D. Joannopoulos, and E.F. Schubert, High extraction efficiency of spontaneous emission from slabs of photonic crystals, Phys. Rev. Lett. 78, 3294 (1997).
  • [3]
    M. Boroditsky, R. Vrijen, T.F. Krauss, R. Coccioli, R. Bhat, and E. Yablonovitch, Spontaneous emission extraction and Purcell enhancement from thin-film 2-D photonic crystals, J. Lightwave Technol. 17, 2096 (1999).
  • [4]
    R.K. Lee, Y. Xu, and A. Yariv, Modified spontaneous emission from a two-dimensional photonic bandgap crystal slab, J. Opt. Soc. Am. B 17, 1438 (2000).
  • [5]
    A.-L. Fehrembach, S. Enoch, and A. Sentenac, Highly directive light sources using two-dimensional photonic crystal slabs, Appl. Phys. Lett. 79, 4280 (2001).
  • [6]
    D. Delbeke, P. Bienstmann, R. Bockstaele, and R. Baets, Rigorous electromagnetic analysis of dipole emission in periodically corrugated layers: the grating-assisted resonant-cavity light-emitting diode, J. Opt. Soc. Am. A 5, 871 (2002).
  • [7]
    M. Rattier, H. Benisty, E. Schwoob, C. Weisbuch, T.F. Krauss, C.J.M. Smith, R. Houdré, and U. Oesterle, Omnidirectional and compact guided light extraction from Archimedean photonic lattices, Appl. Phys. Lett. 83, 1283 (2003).
  • [8]
    J.J. Wierer, M.R. Krames, J.E. Epler, N.F. Gardner, M.G. Craford, J.R. Wendt, J.A. Simmons, and M.M. Sigalas, InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures, Appl. Phys. Lett. 84, 3885 (2004).
  • [9]
    J. Shakya, K.H. Kim, J.Y. Lin, and H.X. Jiang, Enhanced light extraction in III-nitride ultraviolet photonic crystal light-emitting diodes, Appl. Phys. Lett. 85, 142 (2004).
  • [10]
    M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals, Science 308, 1296 (2005).
  • [11]
    A. David, C. Meier, R. Sharma, F.S. Diana, S.P. DenBaars, E. Hu, S. Nakamura, C. Weisbuch, and H. Benisty, Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction, Appl. Phys. Lett. 87, 101107 (2005).
  • [12]
    A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S.P. DenBaars, E.L. Hu, C. Weisbuch, and H. Benisty, Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution, Appl. Phys. Lett. 88, 061124 (2006).
  • [13]
    A. David, T. Fujii, E. Matioli, R. Sharma, S. Nakamura, S.P. DenBaars, C. Weisbuch, and H. Bensity, GaN light-emitting diodes with Archimedean lattice photonic crystals, Appl. Phys. Lett. 88, 073510 (2006).
  • [14]
    A. David, T. Fujii, B. Moran, S. Nakamura, S.P. DenBaars, C. Weisbuch, and H. Benisty, Photonic crystal laser lift-off GaN light-emitting diodes, Appl. Phys. Lett. 88, 133514 (2006).
  • [15]
    A. David, H. Benisty, and C. Weisbuch, Optimization of light-diffracting photonic-crystals for high extraction efficiency LEDs, J. Display Technol. 3, 133 (2007).
  • [16]
    A. David, B. Moran, K. McGroddy, E. Matioli, E.L. Hu, S.P. DenBaars, S. Nakamura, and C. Weisbuch, GaN/InGaN light-emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth, Appl. Phys. Lett. 92, 113514 (2008).
  • [17]
    Ch. Wiesmann, K. Bergenek, N. Linder, and U.T. Schwarz, Analysis of the emission characteristics of photonic crystal LEDs, Proc. SPIE 6989, Light Emission I, 69890L (2008).
  • [18]
    H. Benisty, J. Danglot, A. Talneau, S. Enoch, J.M. Pottage, and A. David, Investigation of extracting photonic crystal lattices for guided modes of GaAs-based heterostructures, IEEE J. Quantum Electron. 44, 777 (2008).
  • [19]
    M.-K. Kwon, J.-Y. Kim, I.-K. Park, K.S. Kim, G.-Y. Jang, S.-J. Park, J.W. Kim, and Y.C. Kim, Enhanced emission efficiency of GaN/InGaN multiple quantum well light-emitting diodes with an embedded photonic crystal, Appl. Phys. Lett. 92, 251110 (2008).
  • [20]
    C.-F. Lai, J.-Y. Chi, H.-H. Yen, H.C. Kuo, C.-H. Chao, H.-T. Hsueh, and J.-F. Trevor, Wang, C.-Y. Huang, and W.-Y. Yeh, Polarized light emission from photonic crystal light-emitting diodes, Appl. Phys. Lett. 92, 243118 (2008).
  • [21]
    K. Bergenek, Ch. Wiesmann, R. Wirth, L. O'Faolain, N. Linder, K. Streubel, and T.F. Krauss, Enhanced light extraction efficiency from AlGaInP thin-film light-emitting diodes with photonic crystals, Appl. Phys. Lett. 93, 041105 (2008).
  • [22]
    K. Bergenek, Ch. Wiesmann, H. Zull, R. Wirth, P. Sundgren, N. Linder, K. Streubel, and T.F. Krauss, Directional light extraction from thin-film resonant cavity light-emitting diodes with a photonic crystal, Appl. Phys. Lett. 93, 231109 (2008).
  • [23]
    K. Bergenek, Ch. Wiesmann, H. Zull, R. Wirth, C. Rumbolz, N. Linder, K. Streubel, and T.F. Krauss, to be published.
  • [24]
    K. McGroddy, A. David, E. Matioli, M. Iza, S. Nakamura, S. DenBaars, J.S. Speck, C. Weisbuch, and E.L. Hu, Directional emission control and increased light extraction in GaN photonic crystal light-emitting diodes, Appl. Phys. Lett. 93, 103502 (2008)
  • [25]
    V. Haerle, B. Hahn, S. Kaiser, A. Weimar, S. Bader, F. Eberhard, A. Plössl, and D. Eisert, High brightness LEDs for general lighting applications using the new ThinGaN™-technology, phys. stat. sol. (A) 201, 2736 (2004).
  • [26]
    M.R. Krames, O.B. Shchekin, R. Mueller-Mach, G.O. Mueller, L. Zhou, G. Harbers, and M.G. Craford, Status and future of high-power light-emitting diodes for solid-state lighting, J. Display Technol. 3, 160 (2007).
  • [27]
    G. Harbers, S.J. Bierhuizen, and M.R. Krames, Performance of high power light-emitting diodes in display illumination applications, J. Display Technol. 3, 98 (2008).
  • [28]
    A. Wilm, Requirements on LEDs in étendue limited light engines, Laser and LED Projection, Proc. SPIE 7001, 70010F (2008).
  • [29]
    W.N. Carr, Photometric figures of merit for semiconductor luminescent sources operating in spontaneous mode, Infrared Phys. 6, 19 (1966). (Reprinted in: Semiconductor Devices Pioneering Papers, edited by S. M. Sze (World Scientific, Singapore, 1991), pp. 919–937).
  • [30]
    A. Taflove and S.C. Hagness, Computational electrodynamics: the finite-difference time-domain method, (Artech House, Norwood, 2005).
  • [31]
    R.N. Hall, Electron-hole recombination in Germanium, Phys. Rev. 87, 387 (1952).
  • [32]
    W. Shockley and W.T. Read, Statistics of the recombination of holes and electrons, Phys. Rev. 87, 835 (1952).
  • [33]
    A.R. Beatti and P.T. Landsberg, Auger effect in semiconductors, Proc. Roy. Soc. London 249, 16 (1959).
  • [34]
    E.M. Purcell, Spontaneous emission probabilities at radio frequencies, Phys. Rev. 69, 681 (1946).
  • [35]
    W.N. Carr and G.E. Pittman, One-watt GaAs p-n junction infrared source, Appl. Phys. Lett. 3, 173 (1963).
  • [36]
    U. Zehnder, A. Weimar, U. Strauss, M. Fehrer, B. Hahn, H.-J. Lugauer, and V. Härle, Industrial production of GaN and InGaN-light-emitting diodes on SiC-substrates, J. Cryst. Growth 230, 497502 (2001).
  • [37]
    M.R. Krames, M. Ochinai-Holocomb, G.E. Höfler, C. Carter-Coman, E.I. Chen, I.-H. Tan, P. Grillot, N.F. Gardner, H.C. Chui, J.-W. Huang, S.A. Stockman, F.A. Kish, and M.G. Craford, High-power truncated-inverted-pyramid (AlxGa1-x)0.5}In0.5P/GaP light-emitting diode exhibiting > 50% external quantum efficiency, Appl. Phys. Lett. 75, 2365 (1999).
  • [38]
    I. Schnitzer, E. Yablonovitch, C. Caneau, T.J. Gmitter, and A. Scherer, 30% external quantum efficiency from surface textured, thin-film light-emitting diodes, Appl. Phys. Lett. 63, 2174 (1993).
  • [39]
    R. Windisch, C. Rooman, S. Meinschmidt, P. Kiesel, D. Zipperer, G.H. Dohler, B. Dutta, M. Kuijk, T. Borghs, and P. Heremans, Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes, Appl. Phys. Lett. 79, 2315 (2001).
  • [40]
    E. Yablonovitch, T. Gmitter, J.P. Harbison, and R. Bhat, Extreme selectivity in the lift-off of epitaxial GaAs films, Appl. Phys. Lett. 51, 2222 (1987).
  • [41]
    M.K. Kelly, O. Ambacher, R. Dimitrov, R. Handschuh, and M. Stutzmann, Optical process for liftoff of group III-nitride films, phys. stat. sol. (A) 159, R3 (1997).
  • [42]
    W.S. Wong, T. Sands, and N.W. Cheung, Damage-free separation of GaN thin-films from sapphire substrates, Appl. Phys. Lett. 72, 599 (1998).
  • [43]
    R. Windisch, R. Butendeich, S. Illek, S. Kugler, R. Wirth, H. Zull, and K. Streubel, 100-lm/W InGaAlP thin-film light-emitting diodes with buried microreflectors, IEEE Photon. Technol. Lett. 19, 774 (2007).
  • [44]
    S. Illek, I. Pietzonka, A. Ploessl, P. Stauss, W. Wegleiter, R. Windisch, R. Wirth, H. Zull, and K. Streubel, Scalability of buried micro-reflector light-emitting diodes for high-current applications, LEDs: Research, Manufacturing and Applications VII Proc. SPIE 4996, 1825 (2003).
  • [45]
    K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, High output power InGaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy, Jpn. J. Appl. Phys. 40, L583 (2001).
  • [46]
    E.F. Schubert, N.E.J. Hunt, M. Micovic, R.J. Malik, D.L. Sivco, A.Y. Cho, and G.D. Zydzik, Highly efficient light-emitting diodes with microcavities, Science 265, 943 (1994).
  • [47]
    H. Benisty, H. De Neve, and C. Weisbuch, Impact of planar microcavity effects on light extraction – Part I: Basic concepts and analytical trends, IEEE J. Quantum Electron. 34, 1612 (1998).
  • [48]
    H. Benisty, H. De Neve, and C. Weisbuch, Impact of planar microcavity effects on light extraction – Part II: Selected exact simulations and role of photon recycling, IEEE J. Quantum Electron. 34, 1632 (1998).
  • [49]
    R. Sharma, Y.-S. Choi, C.-F. Wang, A. David, C. Weisbuch, S. Nakamura, and E.L. Hu, Gallium-nitride-based microcavity light-emitting diodes with air-gap distributed Bragg reflectors, Appl. Phys. Lett. 91, 211108 (2007).
  • [50]
    R. Joray, M. Ilegems, R.P. Stanley, W. Schmid, R. Butendeich, R. Wirth, A. Jaeger, and K. Streubel, Far-field radiation pattern of red emitting thin-film resonant cavity LEDs, IEEE Photon. Technol. Lett. 18, 1052 (2006).
  • [51]
    C. Weisbuch, A. David, T. Fujii, C. Schwach, S.P. Den Baars, S. Nakamura, M. Rattier, H. Benisty, R. Houdré, R. Stanley, J.F. Carlin, T.F. Krauss, and C.J.M. Smith, Recent results and latest views on microcavity LEDs, Proc. SPIE 5366, 119 (2004).
  • [52]
    E.F. Schubert, N.E.J. Hunt, R.J. Malik, M. Micovic, and D.L. Miller, Temperature and modulation characteristics of resonant-cavity light-emitting diodes, J. Lightwave Technol. 14, 1721 (1996).
  • [53]
    J.D. Joannopoulos, S.G. Johnson, J.N. Winn, and R.D. Meade, Photonic crystals – Molding the flow of light, (Princeton University Press, Princeton, 2008).
  • [54]
    J.-M. Lourtioz, H. Benisty, V. Berger, J.-M. Gerard, D. Maystre, and A. Tchelnokov, Photonic crystals: Towards nanoscale photonic devices, (Springer, Berlin, 2008).
  • [55]
    K. Sakoda, Optical properties of photonic crystals, Springer Series in Optical Sciences, Vol. 80 (Springer, Berlin, 2005).
  • [56]
    K. Busch, S. Lölkers, R.B. Wehrspohn, and H. Föll, Photonic Crystals: advances in design, fabrication, and characterization, (Wiley-VCH, Berlin, 2004).
  • [57]
    K. Sakoda, Optical properties of photonic crystals, Springer Series in Optical Sciences, Vol. 80 (Springer, Berlin, 2005), pp. 175–179.
  • [58]
    M.J. Bergmann and H.C. Casey, Optical-field calculations for lossy multiple-layer AlxGa1-xN/InxGa1-xN laser diodes, J. Appl. Phys. 84, 1196 (1998).
  • [59]
    J.D. Joannopoulos, S.G. Johnson, J.N. Winn, and R.D. Meade, Photonic crystals – Molding the flow of light, (Princeton University Press, Princeton, 2008), chap. 2, p. 18.
  • [60]
    S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design, Science 293, 1123 (2001).
  • [61]
    D.M. Whittaker and I.S. Culshaw, Scattering-matrix treatment of patterned multiplayer structures, Phys. Rev. B 60, 2610 (1999).
  • [62]
    S.G. Tikhodeev and A.L. Yablonskii, Quasiguided modes and optical properties of photonic crystal slabs, Phys. Rev. B 66, 045102 (2002).
  • [63]
    H. Kikuta, S. Hino, A. Maruyama, and A. Mizutani, Estimation method for the light extraction efficiency of light-emitting elements with a rigorous grating diffraction theory, J. Opt. Soc. Am. A 23, 1213 (2006).
  • [64]
    D. Delbeke, R. Bockstaele, P. Bienstmann, R. Baets, and H. Benisty, High-efficiency semiconductor resonant-cavity light-emitting diodes: A review, J. Selec. Top. Quantum Electron. 8, 189 (2002).
  • [65]
    P. Altieri, A. Jaeger, R. Windisch, N. Linder, P. Stauss, R. Oberschmid, and K. Streubel, Internal quantum efficiency of high-brightness AlGaInP light-emitting devices, J. Appl. Phys. 98, 086101 (2005).
  • [66]
    S. Noda, N. Yamamoto, and A. Sasaki, New realization method for three-dimensional photonic crystal in optical wavelength region, Jpn. J. Appl. Phys. 35, L909 (1996).
  • [67]
    J.-Q. Xi, M. Ojha, J.L. Plawsky, W.N. Gill, J.K. Kim, and E.F. Schubert, Internal high-reflectivity omnidirectional reflectors, Appl. Phys. Lett. 97, 031111 (2005).
  • [68]
    I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U.K. Mishra, and S.P. DenBaars, Coupling of InGaN quantum-well photoluminescence to silver surface plasmons, Phys. Rev. B 60, 11564 (1999).
  • [69]
    K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, Surface-plasmon-enhanced light emitters based on InGaN quantum wells, Nature Mater. 3, 601 (2004).
  • [70]
    K. Okamoto, I. Niki, A. Shvartser, G. Maltezos, Y. Narukawa, T. Mukai, Y. Kawakami, and A. Scherer, Surface plasmon enhanced bright light emission from InGaN/GaN, phys. stat. sol. (A) 204, 2103 (2007).
  • [71]
    G. Sun, J.B. Khurgin, and R.A. Soref, Practicable enhancement of spontaneous emission using surface plasmons, Appl. Phys. Lett. 90, 111107 (2007).
  • [72]
    J. Yoon, K. Choi, D. Shin, S.H. Song, H.S. Won, J.H. Kim, and J.M. Lee, Enhanced external efficiency of InGaN/GaN quantum well light-emitting diodes by mediating surface plasmon-polaritons, J. Korean Phys. Soc 50, 1018 (2007).
  • [73]
    S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna, Phys. Rev. Lett. 97, 017402 (2006).
  • [74]
    J.B. Khurgin, G. Sun, and R.A. Soref, Electroluminescence efficiency enhancement using metal nanoparticles, Appl. Phys. Lett. 93, 021120 (2008).
  • [75]
    P.B. Johnson and R.W. Christy, Optical constants of the noble metals, Phys. Rev. B 6, 4371 (1972).
  • [76]
    M.B. Stern, H.G. Craighead, P.F. Liao, and P.M. Mankiewich, Fabrication of 20-nm structures in GaAs, Appl. Phys. Lett. 45, 410 (1984).
  • [77]
    S.Y. Chon, P.R. Krauss, and P.J. Renstrom, Imprint lithography with 25-nanometer resolution, Science 272, 85 (1996).
  • [78]
    Y. Xia and G.M. Whitesides, Soft lithography, Annu. Rev. Mater. Sci. 28 153 (1998).
  • [79]
    S. Brueck, Optical and interferometric lithography – Nanotechnology enablers, Proc. IEEE 93, 1704 (2005).
  • [80]
    H.W. Deckmann and J.H. Dunsmuir, Natural lithography, Appl. Phys. Lett. 41, 377 (1982).
  • [81]
    W. Han, S. Fan, Q. Li, and Y. Hu, Synthesis of gallium nitride nanorods through a carbon nanotube-confined Reaction, Science 277, 1287 (1997).
  • [82]
    S.D. Hersee, X. Sun, and X. Wang, The controlled growth of GaN nanowires, Nano Lett. 6, 1808 (2006).
  • [83]
    F. Qian, S. Gradečak, Y. Li, C.-Y. Wen, and C.M. Lieber, Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes, Nano Lett. 5, 2287 (2005).
  • [84]
    http://www.lumerical.com/fdtd_online_help/ref_fdtd_matdb_models.php
  • [85]
    T. Fujii, Y. Gao, R. Sharma, E.L. Hu, S.P. DenBaars, and S. Nakamura, Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening, Appl. Phys. Lett. 84, 855 (2004).
  • [86]
    Y.C. Shen, J.J. Wierer, M.R. Krames, M.J. Ludowise, M.S. Misra, F. Ahmed, A.Y. Kim, G.O. Mueller, J.C. Bhat, S.A. Stockman, and P.S. Martin, Optical cavity effects in InGAN/GaN quantum-well-heterostructures flip-chip light-emitting diodes, Appl. Phys. Lett. 82, 2221 (2003).
  • [87]
    T. Gessmann, E.F. Schubert, J.W. Graff, K. Streubel, and C. Karnutsch, Omnidirectional reflective contacts for light-emitting diodes, IEEE Electron. Device Lett. 24, 683 (2003).