SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Plotkin JS, Scott VL, Pinna A, Dobsch BP, De Wolf AM, Kang Y. Morbidity and mortality in patients with coronary artery disease undergoing orthotopic liver transplantation. Liver Transpl Surg 1996;2:426-430.
  • 2
    Murray KF, Carithers RL Jr; for AASLD. AASLD practice guidelines: evaluation of the patient for liver transplantation. Hepatology 2005;41:1407-1432.
  • 3
    Paugam-Burtz C, Kavafyan J, Merckx P, Dahmani S, Sommacale D, Ramsay M, et al. Postreperfusion syndrome during liver transplantation for cirrhosis: outcome and predictors. Liver Transpl 2009;15:522-529.
  • 4
    Reich DL, Wood RK Jr, Emre S, Bodian CA, Hossain S, Krol M, Feierman D. Association of intraoperative hypotension and pulmonary hypertension with adverse outcomes after orthotopic liver transplantation. J Cardiothorac Vasc Anesth 2003;17:699-702.
  • 5
    Vallance P, Moncada S. Hyperdynamic circulation in cirrhosis: a role for nitric oxide? Lancet 1991;337:776-778.
  • 6
    Laffi G, Foschi M, Masini E, Simoni A, Mugnai L, La Villa G, et al. Increased production of nitric oxide by neutrophils and monocytes from cirrhotic patients with ascites and hyperdynamic circulation. Hepatology 1995;22:1666-1673.
  • 7
    Galley HF, Coomansingh D, Webster NR, Brunt PW. Nitric oxide synthase activity is increased in relation to the severity of liver dysfunction. Clin Sci (Lond) 1998;95:355-359.
  • 8
    Nathan C, Xie QW. Nitric oxide synthases: roles, tolls, and controls. Cell 1994;78:915-918.
  • 9
    Cahill PA, Redmond EM, Sitzmann JV. Endothelial dysfunction in cirrhosis and portal hypertension. Pharmacol Ther 2001;89:273-293.
  • 10
    Bomzon A, Blendis LM. The nitric oxide hypothesis and the hyperdynamic circulation in cirrhosis. Hepatology 1994;20:1343-1350.
  • 11
    Michielsen PP, Pelckmans PA. Haemodynamic changes in portal hypertension: new insights in the pathogenesis and clinical implications. Acta Gastroenterol Belg 1994;57:194-205.
  • 12
    Aggarwal S, Kang Y, Freeman JA, Fortunato FL, Pinsky MR. Postreperfusion syndrome: cardiovascular collapse following hepatic reperfusion during liver transplantation. Transplant Proc 1987;19(suppl 3):54-55.
  • 13
    Moreno C, Sabaté A, Figueras J, Camprubí I, Dalmau A, Fabregat J, et al. Hemodynamic profile and tissular oxygenation in orthotopic liver transplantation: influence of hepatic artery or portal vein revascularization of the graft. Liver Transpl 2006;12:1607-1614.
  • 14
    Ayanoglu HO, Ulukaya S, Tokat Y. Causes of postreperfusion syndrome in living or cadaveric donor liver transplantations. Transplant Proc 2003;35:1442-1444.
  • 15
    Fukazawa K, Pretto EA. The effect of methylene blue during orthotopic liver transplantation on post reperfusion syndrome and postoperative graft function. J Hepatobiliary Pancreat Sci 2011;18:406-413.
  • 16
    Bezinover D, Kadry Z, McCullough P, McQuillan PM, Uemura T, Welker K, et al. Release of cytokines and hemodynamic instability during the reperfusion of a liver graft. Liver Transpl 2011;17:324-330.
  • 17
    Tilg H, Wilmer A, Vogel W, Herold M, Nölchen B, Judmaier G, Huber C. Serum levels of cytokines in chronic liver diseases. Gastroenterology 1992;103:264-274.
  • 18
    Förstermann U, Boissel JP, Kleinert H. Expressional control of the ‘constitutive’ isoforms of nitric oxide synthase (NOS I and NOS III). FASEB J 1998;12:773-790.
  • 19
    Hampl V, Herget J. Role of nitric oxide in the pathogenesis of chronic pulmonary hypertension. Physiol Rev 2000;80:1337-1372.
  • 20
    Iwakiri Y, Tsai MH, McCabe TJ, Gratton JP, Fulton D, Groszmann RJ, Sessa WC. Phosphorylation of eNOS initiates excessive NO production in early phases of portal hypertension. Am J Physiol Heart Circ Physiol 2002;282:H2084-H2090.
  • 21
    García-Cardeña G, Fan R, Stern DF, Liu J, Sessa WC. Endothelial nitric oxide synthase is regulated by tyrosine phosphorylation and interacts with caveolin-1. J Biol Chem 1996;271:27237-27240.
  • 22
    Fisslthaler B, Dimmeler S, Hermann C, Busse R, Fleming I. Phosphorylation and activation of the endothelial nitric oxide synthase by fluid shear stress. Acta Physiol Scand 2000;168:81-88.
  • 23
    Francis SH, Busch JL, Corbin JD, Sibley D. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev 2010;62:525-563.
  • 24
    Bader S, Kortholt A, Van Haastert PJ. Seven Dictyostelium discoideum phosphodiesterases degrade three pools of cAMP and cGMP. Biochem J 2007;402:153-161.
  • 25
    Omori K, Kotera J. Overview of PDEs and their regulation. Circ Res 2007;100:309-327.
  • 26
    Lumsden AB, Henderson JM, Kutner MH. Endotoxin levels measured by a chromogenic assay in portal, hepatic and peripheral venous blood in patients with cirrhosis. Hepatology 1988;8:232-236.
  • 27
    Guarner C, Soriano G, Tomas A, Bulbena O, Novella MT, Balanzo J, et al. Increased serum nitrite and nitrate levels in patients with cirrhosis: relationship to endotoxemia. Hepatology 1993;18:1139-1143.
  • 28
    Masini E, Mugnai L, Foschi M, Laffi G, Gentilini P, Mannaioni PF. Changes in the production of nitric oxide and superoxide by inflammatory cells in liver cirrhosis. Int Arch Allergy Immunol 1995;107:197-198.
  • 29
    Cahill PA, Redmond EM, Hodges R, Zhang S, Sitzmann JV. Increased endothelial nitric oxide synthase activity in the hyperemic vessels of portal hypertensive rats. J Hepatol 1996;25:370-378.
  • 30
    Niederberger M, Ginés P, Martin PY, Tsai P, Morris K, McMurtry I, Schrier RW. Comparison of vascular nitric oxide production and systemic hemodynamics in cirrhosis versus prehepatic portal hypertension in rats. Hepatology 1996;24:947-951.
  • 31
    Li Y, Zheng J, Bird IM, Magness RR. Effects of pulsatile shear stress on nitric oxide production and endothelial cell nitric oxide synthase expression by ovine fetoplacental artery endothelial cells. Biol Reprod 2003;69:1053-1059.
  • 32
    Bohlen HG, Wang W, Gashev A, Gasheva O, Zawieja D. Phasic contractions of rat mesenteric lymphatics increase basal and phasic nitric oxide generation in vivo. Am J Physiol Heart Circ Physiol 2009;297:H1319-H1328.
  • 33
    Wildhirt SM, Weismueller S, Schulze C, Conrad N, Kornberg A, Reichart B. Inducible nitric oxide synthase activation after ischemia/reperfusion contributes to myocardial dysfunction and extent of infarct size in rabbits: evidence for a late phase of nitric oxide-mediated reperfusion injury. Cardiovasc Res 1999;43:698-711.
  • 34
    Bzeizi KI, Jalan R, Henderson N, Thomas HW, Lee A, Hayes PC. Influence of cyclic guanosine monophosphate changes on hemodynamics after reperfusion in liver transplantation. Transplantation 1997;63:403-406.
  • 35
    Cherry PD, Omar HA, Farrell KA, Stuart JS, Wolin MS. Superoxide anion inhibits cGMP-associated bovine pulmonary arterial relaxation. Am J Physiol 1990;259( pt 2):H1056-H1062.
  • 36
    Kang YG, Freeman JA, Aggarwal S, DeWolf AM. Hemodynamic instability during liver transplantation. Transplant Proc 1989;21:3489-3492.
  • 37
    Chui AK, Shi L, Tanaka K, Rao AR, Wang LS, Bookallil M, et al. Postreperfusion syndrome in orthotopic liver transplantation. Transplant Proc 2000;32:2116-2117.
  • 38
    Tonner PH, Scholz J. The NO/cGMP signal transduction system: a central target for anesthetics [in German]? Anasthesiol Intensivmed Notfallmed Schmerzther 1999;34:78-89.
  • 39
    Terasako K, Nakamura K, Miyawaki I, Toda H, Kakuyama M, Mori K. Inhibitory effects of anesthetics on cyclic guanosine monophosphate (cGMP) accumulation in rat cerebellar slices. Anesth Analg 1994;79:921-926.
  • 40
    Muldoon SM, Hart JL, Bowen KA, Freas W. Attenuation of endothelium-mediated vasodilation by halothane. Anesthesiology 1988;68:31-37.
  • 41
    Garthwaite J, Garthwaite G. Cellular origins of cyclic GMP responses to excitatory amino acid receptor agonists in rat cerebellum in vitro. J Neurochem 1987;48:29-39.
  • 42
    Tobin JR, Martin LD, Breslow MJ, Traystman RJ. Selective anesthetic inhibition of brain nitric oxide synthase. Anesthesiology 1994;81:1264-1269.
  • 43
    Uggeri MJ, Proctor GJ, Johns RA. Halothane, enflurane, and isoflurane attenuate both receptor- and non-receptor-mediated EDRF production in rat thoracic aorta. Anesthesiology 1992;76:1012-1017.
  • 44
    Galley HF, Webster NR. Brain nitric oxide synthase activity is decreased by intravenous anesthetics. Anesth Analg 1996;83:591-594.
  • 45
    Murray PA, Fehr DM, Chen BB, Rock P, Esther JW, Desai PM, Nyhan DP. Differential effects of general anesthesia on cGMP-mediated pulmonary vasodilation. J Appl Physiol 1992;73:721-727.
  • 46
    Kant GJ, Muller TW, Lenox RH, Meyerhoff JL. In vivo effects of pentobarbital and halothane anesthesia on levels of adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate in rat brain regions and pituitary. Biochem Pharmacol 1980;29:1891-1896.
  • 47
    Fischer GW, Levin MA. Vasoplegia during cardiac surgery: current concepts and management. Semin Thorac Cardiovasc Surg 2010;22:140-144.
  • 48
    Palmer RM. The discovery of nitric oxide in the vessel wall. A unifying concept in the pathogenesis of sepsis. Arch Surg 1993;128:396-401.
  • 49
    Mayer B, Brunner F, Schmidt K. Novel actions of methylene blue. Eur Heart J 1993;14(suppl 1):22-26.
  • 50
    Cao Z, Gao Y, Tao G. Vasoplegic syndrome during liver transplantation. Anesth Analg 2009;108:1941-1943.
  • 51
    Koelzow H, Gedney JA, Baumann J, Snook NJ, Bellamy MC. The effect of methylene blue on the hemodynamic changes during ischemia reperfusion injury in orthotopic liver transplantation. Anesth Analg 2002;94:824-829.
  • 52
    Fischer GW, Bengtsson Y, Scarola S, Cohen E. Methylene blue for vasopressor-resistant vasoplegia syndrome during liver transplantation. J Cardiothorac Vasc Anesth 2010;24:463-466.