• contact guidance;
  • fibroblasts;
  • hydrogels;
  • stiffness;
  • topographical cues


Thumbnail image of graphical abstract

Previous studies demonstrated the importance of substrate stiffness and topography on the phenotype of many different cell types including fibroblasts. Yet the interaction of these two physical parameters remains insufficiently characterized, in particular for cardiac fibroblasts. Most studies focusing on contact guidance use rigid patterned substrates. It is not known how the ability of cardiac fibroblasts to follow grooves and ridges changes as the substrate stiffness is decreased to match the range of stiffness found in native heart tissues. This report demonstrates a significant interactive effect of substrate stiffness and topography on cardiac fibroblast elongation and orientation using polyacrylamide substrates of different stiffness and topography.