Physical Properties and Erosion Behavior of Poly(trimethylene carbonate-co-ε-caprolactone) Networks

Authors

  • Erhan Bat,

    1. Department of Polymer Chemistry and Biomaterials, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
    Search for more papers by this author
  • Theo G. van Kooten,

    1. Department of Biomedical Engineering, University Medical Centre Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
    Search for more papers by this author
  • Martin C. Harmsen,

    1. Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
    Search for more papers by this author
  • Josée A. Plantinga,

    1. Department of Polymer Chemistry and Biomaterials, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
    Search for more papers by this author
  • Marja J. A. van Luyn,

    1. Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
    Search for more papers by this author
  • Jan Feijen,

    1. Department of Polymer Chemistry and Biomaterials, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
    Search for more papers by this author
  • Dirk W. Grijpma

    Corresponding author
    1. Department of Polymer Chemistry and Biomaterials, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
    2. Department of Biomedical Engineering, University Medical Centre Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
    3. Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
    • Department of Polymer Chemistry and Biomaterials, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
    Search for more papers by this author

Abstract

Form-stable resorbable networks are prepared by gamma irradiating trimethylene carbonate (TMC)- and ε-caprolactone (CL)-based (co)polymer films. To evaluate their suitability for biomedical applications, their physical properties and erosion behavior are investigated. Homopolymer and copolymer networks that are amorphous at room temperature are flexible and rubbery with elastic moduli ranging from 1.8 ± 0.3 to 5.2 ± 0.4 MPa and permanent set values as low as 0.9% strain. The elastic moduli of the semicrystalline networks are higher and range from 61 ± 3 to 484 ± 34 MPa. The erosion behavior of (co)polymer networks is investigated in vitro using macrophage cultures, and in vivo by subcutaneous implantation in rats. In macrophage cultures, as well as upon implantation, a surface erosion process is observed for the amorphous (co)polymer networks, while an abrupt decrease in the rate and a change in the nature of the erosion process are observed with increasing crystallinity. These resorbable and form-stable networks with tuneable properties may find application in a broad range of biomedical applications.

original image

Ancillary