• Al–Zn–Mg–Sc–Zr alloy;
  • corrosion behavior;
  • exfoliation corrosion;
  • intercrystalline corrosion;
  • stress corrosion cracking


The intercrystalline corrosion, exfoliation corrosion (EXCO), and stress corrosion cracking (SCC) of Al–Zn–Mg–Sc–Zr alloy were investigated by means of constant temperature immersion corrosion method, optical microscopy, transmission electron microscopy (TEM), and electrochemical impedance spectroscopy (EIS). The results show that intercrystalline corrosion, and EXCO susceptibility of Al–Zn–Mg–Sc–Zr alloy decrease gradually with increasing of aging time. Corrosion susceptibility order from low to high is as follows: OA > PA > UA > NA. The SCC susceptibility index of PA temper is more than OA temper at the same strain rate. According to TEM observation, with aging time prolonging, a part of η′ phases transform to η equilibrium phases, which become coarse gradually. The distribution discontinuity of the grain boundary precipitates increases. In addition, for Al–Zn–Mg–Sc–Zr alloy without EXCO, the EIS is comprised by a capacitive impedance arc at high frequency and an inductive impedance arc at low frequency. Once EXCO occurs, the EIS is composed of two capacitive impedance arcs at high frequency and at low frequency, respectively.