• Schnorr randomness;
  • computably randomness;
  • truth-table reducibility;
  • van Lambalgen's Theorem;
  • MSC (2010) 68Q30;
  • 03D15;
  • 03D25


Schnorr randomness and computable randomness are natural concepts of random sequences. However van Lambalgen’s Theorem fails for both randomnesses. In this paper we define truth-table Schnorr randomness (defined in 6 too only by martingales) and truth-table reducible randomness, for which we prove that van Lambalgen's Theorem holds. We also show that the classes of truth-table Schnorr random reals relative to a high set contain reals Turing equivalent to the high set. It follows that each high Schnorr random real is half of a real for which van Lambalgen's Theorem fails. Moreover we establish the coincidence between triviality and lowness notions for truth-table Schnorr randomness. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim