SEARCH

SEARCH BY CITATION

References

  • 1
    M. Foreman and S. Todorčević, A new Löwenheim-Skolem theorem, Trans. Amer. Math. Soc. 357(5), 16931715 (2005).
  • 2
    T. Jech, Set theory, Springer Monographs in Mathematics (Springer-Verlag, Berlin, 2003).
  • 3
    R. B. Jensen, The fine structure of the constructible hierarchy, Ann. Math. Logic 4, 229308 (1972); erratum, ibid. 4 (1972), 443.
  • 4
    K. Namba, inline image-distributive law and perfect sets in generalized Baire space, Comment. Math. Univ. St. Paul. 20, 107126 (1971/72).
  • 5
    H. Sakai, Semi-stationary reflection and weak square, preprint (2012).
  • 6
    E. Schimmerling, Combinatorial principles in the core model for one Woodin cardinal, Ann. Pure Appl. Log. 74(2), 153201 (1995).
  • 7
    R. M. Solovay, Strongly compact cardinals and the inline image, in: Proceedings of the Tarski Symposium. An international symposium held at the University of California, Berkeley, June 23–30, 1971, to honor Alfred Tarski on the occasion of his seventieth birthday. Edited by L. A. Henkin, J. W. Addison, C. C. Chang, W. Craig, D. Scott and R. Vaught. Proceedings of Symposia in Pure Mathematics Vol. 25 (American Mathematical Society, Providence RI, 1974), pp. 365372.
  • 8
    S. Todorčević, On a conjecture of R. Rado, J. Lond. Math. Soc. (2) 27(1), 18 (1983).
  • 9
    S. Todorčević, Partitioning pairs of countable ordinals, Acta Math. 159(3–4), 261294 (1987).
  • 10
    S. Todorčević, Conjectures of Rado and Chang and cardinal arithmetic, in: Finite and infinite combinatorics in sets and logic. Proceedings of the NATO Advanced Study Institute held in Banff, Alberta, April 21–May 4, 1991, edited by N. W. Sauer, R. E. Woodrow and B. Sands. NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences Vol. 411 (Kluwer, Dordrecht, 1993), pp. 385398.
  • 11
    S. Todorčević, Walks on ordinals and their characteristics, Progress in Mathematics Vol. 263 (Birkhäuser Verlag, Basel, 2007).
  • 12
    S. Todorčević and V. Torres Pérez, Conjectures of Rado and Chang and special Aronszajn trees, Math. Log. Q. 58(4–5), 342347 (2012).