SEARCH

SEARCH BY CITATION

References

  • 1
    L. Altshuler, Uniform convexity in Lorentz sequence spaces, Israel J. Math. 20(3–4),260274(1975).
  • 2
    C. Bennett and R. Sharpley, Interpolation of Operators (Academic Press, Inc., New York, 1988).
  • 3
    G. Birkhoff, Lattice Theory (American Mathematical Society, Providence, RI, 1967).
  • 4
    N. L. Carothers and S. J. Dilworth, Equidistributed random variables in Lp, q, J. Funct. Anal. 84(1),146159(1989).
  • 5
    N. L. Carothers, R. Haydon, and P. K. Lin, On the isometries of Lorentz function spaces, Israel J. Math. 84,265287(1993).
  • 6
    J. Cerdà, H. Hudzik, A. Kamińska, and M. Mastyło, Geometric properties of symmetric spaces with applications to Orlicz-Lorentz spaces, Positivity 2,311337(1998).
  • 7
    S. T. Chen, Geometry of Orlicz Spaces, Dissertationes Mathematicae (Rozprawy Matematyczne) Vol. 356 (Polish Academy of Sciences, Warsaw, 1996).
  • 8
    V. I. Chilin, P. G. Dodds, A. A. Sedaev, and F. A. Sukochev, Characterizations of Kadec-Klee properties in symmetric spaces of measurable functions, Trans. Amer. Math. Soc. 348(12),48954918(1996).
  • 9
    P. G. Dodds, T. K. Dodds, A. A. Sedaev, and F. A. Sukochev, Local uniform convexity and Kadec-Klee type properties in K-interpolation spaces II, J. Funct. Spaces Appl. 2(3),323356(2004).
  • 10
    P. Foralewski, H. Hudzik, and L. Szymaszkiewicz, On some geometric and topological properties of generalized Orlicz-Lorentz sequence spaces, Math. Nachr. 281(2),181198(2008).
  • 11
    P. Foralewski, H. Hudzik, and L. Szymaszkiewicz, Local rotundity structure of generalized Orlicz-Lorentz sequence spaces, Nonlinear Anal. 68,27092718(2008).
  • 12
    P. Foralewski and P. Kolwicz, Local uniform rotundity in Calderón-Lozanovskiĭ spaces, J. Convex Analysis 14(2),395412(2007).
  • 13
    I. Halperin, Uniform convexity in function spaces, Duke Math. J. 21,195204(1954).
  • 14
    H. Hudzik, Banach lattices with order isometric copies of l, Indag. Math. New. Ser. 9(4),521527(1998).
  • 15
    H. Hudzik and A. Kamińska, Monotonicity properties of Lorentz spaces, Proc. Amer. Math. Soc. 123(9),27152721(1995).
  • 16
    H. Hudzik, A. Kamińska, and M. Mastyło, Geometric properties of some Calderón-Lozanovskiĭ space and Orlicz-Lorentz spaces, Houston J. Math. 22(3),639663(1996).
  • 17
    H. Hudzik, A. Kamińska, and M. Mastyło, On geometric properties of Orlicz-Lorentz spaces, Canadian Math. Bull. 40(3),316329(1997).
  • 18
    H. Hudzik, A. Kamińska, and M. Mastyło, On the dual of Orlicz-Lorentz space, Proc. Amer. Math. Soc. 130(6),16451654(2002).
  • 19
    H. Hudzik and W. Kurc, Monotonicity properties of Musielak-Orlicz spaces and dominated best approximation in Banach lattices, J. Approx. Theory 95,353368(1998).
  • 20
    A. Kamińska, Some remarks on Orlicz-Lorentz spaces, Math. Nachr. 147,2938(1990).
  • 21
    A. Kamińska, Extremal points in Orlicz-Lorentz spaces, Arch. Math. 55,173180(1990).
  • 22
    A. Kamińska, Uniform convexity of generalized Lorentz spaces, Arch. Math. 56,181188(1991).
  • 23
    A. Kamińska and L. Maligranda, Order convexity and concavity of Lorentz spaces Λp, ω, 0 < p < ∞, Studia Math. 160(3),267286(2004).
  • 24
    A. Kamińska and A. M. Parrish, Convexity and concavity constants in Lorentz and Marcinkiewicz spaces, J. Math. Anal. Appl. 343,337351(2008).
  • 25
    L. V. Kantorovich and G. P. Akilov, Functional Analysis (Pergamon Press, Oxford, 1982) (English translation from the Russian edition).
  • 26
    M. Kato and L. Maligranda, On James and Jordan-von Neumann constants of Lorentz sequence spaces, J. Math. Anal. Appl. 258,457465(2001).
  • 27
    M. A. Krasnoselskiĭ and Ya. B. Rutickiĭ, Convex Functions and Orlicz Spaces (P. Nordhoff Ltd., Groningen, 1961) (English translation from the Russian edition).
  • 28
    S. G. Krein, Ju. I. Petunin, and E. M. Semenov, Interpolation of Linear Operators, Translations of Mathematical Monographs Vol. 54 (American Mathematical Society, Providence, RI, 1982).
  • 29
    F. E. Levis and H. H. Cuenya, Gateaux differentiability in Orlicz-Lorentz spaces and applications, Math. Nachr. 280(11),12821296(2007).
  • 30
    F. E. Levis, H. H. Cuenya, and A. N. Priori, Best constant approximants in Orlicz-Lorentz spaces, Commentat Math. 48(1),5973(2008).
  • 31
    J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Function Spaces (Springer-Verlag, Berlin-Heidelberg- New York, 1979).
  • 32
    G. G. Lorentz, Some new functional space, Ann. Math. 51(1),3755(1950).
  • 33
    G. G. Lorentz, On the theory of space Λ, Pac. J. Math. 1(3),411429(1951).
  • 34
    G. G. Lorentz, An inequality for rearrangements, Am. Math. Mont. 60,176179(1953).
  • 35
    W. A. J. Luxemburg, Banach Function Spaces (Thesis, Delft, 1955).
  • 36
    L. Maligranda, Orlicz Spaces and Interpolation, Seminars in Mathematics Vol. 5 (Universidade Estadual de Campinas, Campinas, SP, Brazil, 1989).
  • 37
    J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics Vol. 1034 (Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983).
  • 38
    M. Nawrocki, The Mackey topology of some F-spaces, Ph.D. thesis, Adam Mickiewicz University (1984) (in Polish).
  • 39
    J. V. Ryff, Measure preserving transformations and rearrangements, J. Math. Anal. Appl. 31,449458(1970).