Uniqueness of solutions to degenerate parabolic and elliptic equations in weighted Lebesgue spaces

Authors


Abstract

We investigate uniqueness for degenerate parabolic and elliptic equations in the class of solutions belonging to weighted Lebesgue spaces and not satisfying any boundary condition. The uniqueness result that we provide relies on the existence of suitable positive supersolutions of the adjoint equations. Under proper assumptions on the behavior at the boundary of the coefficients of the operator, such supersolutions are constructed, mainly using the distance function from the boundary.

Ancillary