• direct laser writing;
  • thiol-ene chemistry;
  • surface functionalization


Three-dimensional microstructures are fabricated employing the direct laser writing process and radical thiol-ene polymerization. The resin system consists of a two-photon photoinitiator and multifunctional thiols and olefins. Woodpile photonic crystals with 22 layers and a rod distance of 2 μm are fabricated. The structures are characterized via scanning electron microscopy and focused ion beam milling. The thiol-ene polymerization during fabrication is verified via infrared spectroscopy. The structures are grafted in a subsequent thiol-Michael addition reaction with different functional maleimides. The success of the grafting reaction is evaluated via laser scanning microscopy and X-ray photoelectron spectroscopy. The grafting density is calculated to be close to 200 molecules μm−2.