Increasing the Open-Circuit Voltage in High-Performance Organic Photovoltaic Devices through Conformational Twisting of an Indacenodithiophene-Based Conjugated Polymer




A fused ladder indacenodithiophene (IDT)-based donor–acceptor (D–A)-type alternating conjugated polymer, PIDTHT-BT, presenting n-hexylthiophene conjugated side chains is prepared. By extending the degree of intramolecular repulsion through the conjugated side chain moieties, an energy level for the highest occupied molecular orbital (HOMO) of –5.46 eV – a value approximately 0.27 eV lower than that of its counterpart PIDTDT-BT – is obtained, subsequently providing a fabricated solar cell with a high open-circuit voltage of approximately 0.947 V. The hole mobility (determined using the space charge-limited current model) in a blend film containing 20 wt% PIDTHT-BT) and 80 wt% [6,6]-phenyl-C71 butyric acid methyl ester (PC71BM) is 2.2 × 10–9 m2 V–1 s–1, which is within the range of reasonable values for applications in organic photovoltaics. The power conversion efficiency is 4.5% under simulated solar illumination (AM 1.5G, 100 mW cm–2).