Gas-Phase Polymerization with Transition Metal Catalysts Supported on Montmorillonite – A Particle Morphological Study

Authors


Abstract

This investigation focuses on the mechanism of particle fragmentation and growth when clay-supported metallocene catalysts are used to polymerize ethylene in gas-phase reactors. We supported bis(cyclopentadienyl)-zirconium dichloride (Cp2ZrCl2) on montmorillonite (MMT) pretreated with triisobutylaluminum and 10-undecence-1-ol to produce in-situ polyethylene-clay nanocomposites. During gas phase polymerization, the MMT layers were exfoliated by the growing polymer chains, starting from the openings of the clay galleries. After microtoming, the cross-section of the fragmented MMT particles showed bundles of distorted silicate layer stacks, proving that exfoliation took place during polymerization, producing an in-situ polyethylene-clay nanocomposite. Calculations of d-spacing by transmission electron microscopy (TEM) matched those measured by X-ray diffraction (XRD) analysis.

Ancillary