• Cell division;
  • Escherichia coli ;
  • FtsN;
  • TolQ


Mutations involving the Tol-Pal complex of Escherichia coli result in a subtle phenotype in which cells chain when grown under low-salt conditions. Here, the nonpolar deletion of individual genes encoding the cytoplasmic membrane-associated components of the complex (TolQ, TolR, TolA) produced a similar phenotype. Surprisingly, the overexpression of one of these proteins, TolQ, resulted in a much more overt phenotype in which cells occurred as elongated rods coupled in long chains when grown under normal salt conditions. Neither TolR nor TolA overexpression produced a phenotype, nor was the presence of either protein required for the TolQ-dependent phenotype. Consistent with their native membrane topology, the amino-terminal domain of TolQ specifically associated in vivo with the periplasmic domain of FtsN in a cytoplasm-based two-hybrid analysis. Further, the concomitant overexpression of FtsN rescued the TolQ-dependent phenotype, suggesting a model wherein the overexpression of TolQ sequesters FtsN, depleting this essential protein from the divisome during Gram-negative cell division. The role of the Tol-Pal system in division is discussed.