SEARCH

SEARCH BY CITATION

References

  • Alcock, J. 2006. An enthusiasm for orchids: sex and deception in plant evolution. Oxford Univ. Press, Oxford.
  • Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic Local Alignment Search Tool. J. Mol. Biol. 215:403410.
  • Álvarez-Pérez, S., and C. M. Herrera. 2013. Composition, richness and non-random assembly of culturable bacterial–microfungal communities in floral nectar of Mediterranean plants. FEMS Microbiol. Ecol. 83:685699.
  • Álvarez-Pérez, S., C. M. Herrera, and C. de Vega. 2012. Zooming-in on floral nectar: a first exploration of nectar-associated bacteria in wild plant communities. FEMS Microbiol. Ecol. 80:591602.
  • Álvarez-Pérez, S., B. Lievens, H. Jacquemyn, and C. M. Herrera. 2013. Acinetobacter nectaris sp. nov. and Acinetobacter boissieri sp. nov., two novel bacterial species isolated from floral nectar of wild Mediterranean insect-pollinated plants. Int. J. Syst. Evol. Microbiol. 63:15321539.
  • Amend, A. S., K. A. Seifert, R. Samson, and T. D. Bruns. 2010. Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proc. Natl. Acad. Sci. USA 107:1374813753.
  • Anzai, Y., H. Kim, J. Y. Park, H. Wakabayashi, and H. Oyaizu. 2000. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int. J. Syst. Evol. Microbiol. 50:15631589.
  • Aslanzadeh, J. 2006. Biochemical profile-based microbial identification systems. Pp. 84116 in Y.-W. Tang and C. W. Stratton, eds. Advanced techniques in diagnostic microbiology. Springer, New York, NY.
  • Belisle, M., K. G. Peay, and T. Fukami. 2012. Flowers as islands: spatial distribution of nectar-inhabiting microfungi among plants of Mimulus aurantiacus: a hummingbird-pollinated shrub. Microb. Ecol. 63:711718.
  • Brysch-Herzberg, M. 2004. Ecology of yeasts in plant-bumblebee mutualism in Central Europe. FEMS Microbiol. Ecol. 50:87100.
  • Burns-Balogh, P., D. L. Szlachetko, and A. Dafni. 1987. Evolution, pollination, and systematics of the tribe Neottieae (Orchidaceae). Plant Syst. Evol. 156:91115.
  • Canto, A., and C. M. Herrera. 2012. Micro-organisms behind the pollination scenes: microbial imprint on floral sugar variation in a tropical plant community. Ann. Bot. 110:11731183.
  • Carter, C., and R. W. Thornburg. 2004. Is the nectar redox cycle a floral defense against microbial attack? Trends Plant Sci. 9:320324.
  • Chao, A., R. L. Chazdon, R. K. Colwell, and T. J. Shen. 2005. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett. 8:148159.
  • van der Cingel, N. A. 1995. An atlas of orchid pollination, European orchids. A. A. Balkema, Rotterda.
  • Claessens, J., and J. Kleynen. 2011. The flower of the European orchid. Form and function.. Voerendaal/Stein, Schrijen-Lippertz.
  • Cole, J. R., Q. Wang, E. Cardenas, J. Fish, B. Chai, R. J. Farris, et al. 2009. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37:D141D145.
  • Colwell, R. K. 2009. EstimateS: statistical estimation of species richness and shared species from samples, Version 8.2. User's Guide and application. Available at http://purl.oclc.org/estimates.
  • Darwin, C. 1867. On the various contrivances by which British and foreign orchids are fertilized by insects. John Murray, London.
  • Ehlers, B. K., and J. M. Olesen. 1997. The fruit-wasp route to toxic nectar in Epipactis orchids? Flora 192:223229.
  • Fridman, S., I. Izhaki, Y. Gerchman, and M. Halpern. 2012. Bacterial communities in floral nectar. Environ. Microbiol. Rep. 4:97104.
  • Goodrich, K. R., M. L. Zjhra, C. A. Ley, and R. A. Raguso. 2006. When flowers smell fermented: the chemistry and ontogeny of yeasty floral scent in pawpaw (Asimina triloba: Annonaceae). Int. J. Plant Sci. 167:3346.
  • Gotelli, N. J., and R. K. Colwell. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4:379391.
  • Heil, M. 2011. Nectar: generation, regulation and ecological functions. Trends Plant Sci. 16:191200.
  • Herrera, C. M., and M. I. Pozo. 2010. Nectar yeasts warm the flowers of a winter-blooming plant. Proc. Biol. Sci. 277:18271834.
  • Herrera, C. M., I. M. García, and R. Pérez. 2008. Invisible floral larcenies: microbial communities degrade floral nectar of bumblebee-pollinated plants. Ecology 89:23692376.
  • Herrera, C. M., C. de Vega, A. Canto, and M. I. Pozo. 2009. Yeasts in floral nectar: a quantitative survey. Ann. Bot. 103:14151423.
  • Herrera, C. M., A. Canto, M. I. Pozo, and P. Bazaga. 2010. Inhospitable sweetness: nectar filtering of pollinator-borne inocula leads to impoverished, phylogenetically clustered yeast communities. Proc. Biol. Sci. 277:747754.
  • Herrera, C. M., M. I. Pozo, and M. Medrano. 2013. Yeasts in nectar of an early-blooming herb: sought by bumble bees, detrimental to plant fecundity. Ecology 94:273279.
  • Hillwig, M. S., X. Liu, G. Liu, R. W. Thornburg, and G. C. Macintosh. 2010. Petunia nectar proteins have ribonuclease activity. J. Exp. Bot. 61:29512965.
  • Jakubska, A., D. Przado, M. Steininger, J. Anioł-Kwiatkowska, and M. Kadej. 2005. Why do pollinaotrs become “sluggish”? Nectar chemical constituents from Epipactis helleborine (L.) Crantz (Orchidaceae). Appl. Ecol. Environ. Res. 3:2938.
  • Jersáková, J., and S. D. Johnson. 2006. Lack of floral nectar reduces self-pollination in a fly-pollinated orchid. Oecologia 147:6068.
  • Jersáková, J., S. D. Johnson, P. Kindlmann, and A. C. Puppin. 2008. Effect of nectar supplementation on male and female components of pollination success in the deceptive orchid Dactylorhiza sambucina. Acta Oecol. 33:300306.
  • Johnson, S. D., C. I. Peter, and J. Ågren. 2004. The effects of nectar addition on pollen removal and geitonogamy in the non-rewarding orchid Anacamptis morio. Proc. Biol. Sci. 271:803809.
  • Kram, B. W., E. A. Bainbridge, M. A. Perera, and C. Carter. 2008. Identification, cloning and characterization of a GDSL lipase secreted into the nectar of Jacaranda mimosifolia. Plant Mol. Biol. 68:173183.
  • Kurtzman, C. P., and C. J. Robnett. 1998. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Leeuwenhoek 73:331371.
  • Kwon, S. W., S. J. Go, H. W. Kang, J. C. Ryu, and J. K. Jo. 1997. Phylogenetic analysis of Erwinia species based on 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 47:10611067.
  • Lievens, B., M. Brouwer, A. C. R. C. Vanachter, C. A. Lévesque, B. P. A. Cammue, and B. P. H. J. Thomma. 2003. Design and development of a DNA array for rapid detection and identification of multiple tomato vascular wilt pathogens. FEMS Microbiol. Lett. 223:113122.
  • Løjtnant, B. 1974. Toxic nectar, “drunken” wasps and orchids. Kaskelot 15:37.
  • Manson, J., M. A. Lachance, and J. Thomson. 2007. Candida gelsemii sp. nov., a yeast of the Metschnikowiaceae clade isolated from nectar of the poisonous Carolina jessamine. Antonie Leeuwenhoek 92:3742.
  • Marchesi, J. R., T. Sato, A. J. Weightman, T. A. Martin, J. C. Fry, S. J. Hiom, et al. 1998. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microbiol. 64:795799.
  • Mares, D. 1987. Antimicrobial activity of protoanemonin, a lactone from ranunculaceous plants. Mycopathologia 98:133140.
  • Neiland, M. R. M., and C. C. Wilcock. 1998. Fruit set, nectar reward, and rarity in the Orchidaceae. Am. J. Bot. 85:16571671.
  • Nicolson, S. W., and R. W. Thornburg. 2007. Nectar chemistry. Pp. 215263 in S. W. Nicolson, M. Nepi and E. Pacini, eds. Nectaries and Nectar. Springer-Verlag, Dordrecht.
  • O'Donnell, K. 1993. Fusarium and its near relatives. Pp. 225233 in D. R. Reynolds and J. W. Taylor, eds. The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International, Wallingford.
  • Osborn, A. M., E. R. B. Moore, and K. N. Timmis. 2000. An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ. Microbiol. 2:3950.
  • Peay, K. G., M. Belisle, and T. Fukami. 2012. Phylogenetic relatedness predicts priority effects in nectar yeast communities. Proc. Biol. Sci. 279:749758.
  • van der Pijl, L., and C. H. Dodson. 1966. Orchid flowers – their pollination and evolution. Coral Gables University of Miami Press, Miami.
  • Pozo, M. I. 2012. Yeasts in floral nectar: community ecology and interactions with insect pollinators and host plants. Unpublished D. Phil. Thesis, University of Seville, Spain.
  • Pozo, M. I., C. M. Herrera, and P. Bazaga. 2011. Species richness of yeast communities in floral nectar of southern Spanish plants. Microb. Ecol. 61:8291.
  • Pozo, M. I., M. A. Lachance, and C. M. Herrera. 2012. Nectar yeasts of two southern Spanish plants: the roles of immigration and physiological traits in community assembly. FEMS Microbiol. Ecol. 80:281293.
  • Pridgeon, A. M., P. Cribb, M. W. Chase, and F. N. Rasmussen. 2005. Genera Orchidacearum: volume 4: epidendroideae (Part 1). Oxford Univ. Press, Oxford.
  • Pyke, G. H. 1991. What does it cost a plant to produce floral nectar? Nature 350:5859.
  • Raguso, R. A. 2004. Why are some floral nectars scented? Ecology 85:14861494.
  • Robatsch, K. 1995. Beitrage zur Kenntnis des europäischen Epipactis-Arten (Orchidaceae) und zur Evolution der Autogamie bei europäischen und asiatischen Gattungen der Neottiodeae. J. Eur. Orch. 27:125177.
  • Ronquist, F., M. Teslenko, P. Van der Mark, D. L. Ayres, A. Darling, S. Hohna, et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61:539542.
  • Rosenzweig, N., J. M. Tiedje, J. F. Quensen, Q. Mang, and J. J. Hao. 2012. Microbial communities associated with potato common scab-suppressive soil determined by pyrosequencing analyses. Plant Dis. 96:718725.
  • Schloss, P. D., S. L. Westcott, T. Ryabin, J. R. Hall, M. Hartmann, E. B. Hollister, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75:3741.
  • Simberloff, D. 1978. Use of rarefaction and related methods in ecology. Pp. 150165 in K. L. Dickson, J. Cairns and R. J. Linvingston, eds. Biological data in water pollution assessment: quantitative and statistical analyses. American Society for Testing and Materials, Philadelphia, PA.
  • Sugiura, N. 1978. Further analysis of the data by Akaike's information criterion and the finite corrections. Commun Stat-Theor M 7:1326.
  • Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:27312739.
  • Tanabe, A. S. 2011. Kakusan4 and Aminosan: two programs for comparing nonpartitioned, proportional, and separate models for combined molecular phylogenetic analyses of multilocus sequence data. Mol. Ecol. Resour. 11:914921.
  • Tremblay, R. L., J. D. Ackerman, J. K. Zimmerman, and R. N. Calvo. 2005. Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification. Biol. J. Linn. Soc. 84:154.
  • Vannette, R. L., M. P. L. Gauthier, and T. Fukami. 2013. Nectar bacteria, but not yeast, weaken a plant-pollinator interaction. Proc. Biol. Sci. 280:20122601.
  • de Vega, C., C. M. Herrera, and S. D. Johnson. 2009. Yeasts in floral nectar of some South African plants: quantification and associations with pollinator type. S. Afr. J. Bot. 75:798806.
  • Wang, W., and M. Sum. 2009. Phylogenetic relationships between Bacillus species and related genera inferred from 16s rDNA sequences. Braz. J. Microbiol. 40:505521.
  • Zahoor, T., F. Siddique, and U. Farooq. 2006. Isolation and characterization of vinegar culture (Acetobacter aceti) from indigenous sources. Br. Food J. 108:429439.