• Bakken, L. R., L. Bergaust, B. Liu, and Å. Frostegård. 2012. Regulation of denitrification at the cellular level: a clue to the understanding of N2O emissions from soils. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367:12261234.
  • Banci, L., I. Bertini, S. Ciofi-Baffoni, T. Kozyreva, K. Zovo, and P. Palumaa. 2010. Affinity gradients drive copper to cellular destinations. Nature 465:645648.
  • Baumann, B., M. Snozzi, A. J. Zehnder, and J. R. Van Der Meer. 1996. Dynamics of denitrification activity of Paracoccus denitrificans in continuous culture during aerobic-anaerobic changes. J. Bacteriol. 178:43674374.
  • Bergaust, L., R. J. M. van Spanning, Å. Frostegård, and L. R. Bakken. 2012. Expression of nitrous oxide reductase in Paracoccus denitrificans is regulated by oxygen and nitric oxide through FnrP and NNR. Microbiology 158:826834.
  • Betlach, M. R., and J. M. Tiedje. 1981. Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification. Appl. Environ. Microbiol. 42:10741084.
  • Brown, K., K. Djinovic-Carugo, T. Haltia, I. Cabrito, M. Saraste, J. J. G. Moura, et al. 2000. Revisiting the catalytic CuZ cluster of nitrous oxide (N2O) reductase. J. Biol. Chem. 275:4113341136.
  • Cornish-Bowden, A. 2012. Fundamentals of enzyme kinetics, 4th ed. Wiley-Blackwell, Weinheim, Germany.
  • Felgate, H., G. Giannopoulos, M. J. Sullivan, A. J. Gates, T. A. Clarke, E. Baggs, et al. 2012. The impact of copper, nitrate and carbon status on the emission of nitrous oxide by two species of bacteria with biochemically distinct denitrification pathways. Environ. Microbiol. 14:17881800.
  • Field, S. J., F. H. Thorndycroft, A. D. Matorin, D. J. Richardson, and N. J. Watmough. 2008. The Respiratory nitric oxide reductase (NorBC) from Paracoccus denitrificans. Methods Enzymol. 437:79101.
  • Heinen, M. 2006. Simplified denitrification models: overview and properties. Geoderma 133:444463.
  • IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Pp. 996 in S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller, eds. Cambridge Univ. Press, Cambridge, U.K., New York, NY.
  • Kǔcera, I. 1992. Oscillations of nitric oxide concentration in the perturbed denitrification pathway of Paracoccus denitrificans. Biochem. J. 286:111116.
  • Mills, P. C., G. Rowley, S. Spiro, J. C. D. Hinton, and D. J. Richardson. 2008. A combination of cytochrome c nitrite reductase (NrfA) and flavorubredoxin (NorV) protects Salmonella enterica serovar Typhimurium against killing by NO in anoxic environments. Microbiol. 154:12181228.
  • Rasmussen, T., B. C. Berks, J. N. Butt, and A. J. Thomson. 2002. Multiple forms of the catalytic centre, CuZ, in the enzyme nitrous oxide reductase from Paracoccus pantotrophus. Biochem. J. 364:807815.
  • Richardson, D., H. Felgate, N. Watmough, A. Thomson, and E. Baggs. 2009. Mitigating release of the potent greenhouse gas N2O from the nitrogen cycle – could enzymic regulation hold the key? Trends Biotechnol. 27:388397.
  • Thomsen, J. K., T. Geest, and R. P. Cox. 1994. Mass spectrometric studies of the effect of pH on the accumulation of intermediates in denitrification by Paracoccus denitrificans. Appl. Environ. Microbiol. 60:536541.
  • Xu, B., and S. O. Enfors. 1996. Modeling of nitrite accumulation by the denitrifying bacterium Pseudomonas stutzeri. J. Ferment. Bioeng. 82:5660.
  • Zumft, W. 1997. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61:533616.