SEARCH

SEARCH BY CITATION

References

  • Antón, J., R. Rosselló-Mora, F. Rodríguez-Valera, and R. Amann. 2000. Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl. Environ. Microbiol. 66:30523057.
  • Atanasova, N. S., E. Roine, A. Oren, D. H. Bamford, and H. M. Oksanen. 2012. Global network of specific virus-host interactions in hypersaline environments. Environ. Microbiol. 14:426440.
  • De Vuyst, L., and F. Leroy. 2007. Bacteriocins from lactic acid bacteria: production, purification, and food applications. J. Mol. Microbiol. Biotechnol. 13:194199.
  • Fimland, G., V. G. H. Eijsink, and J. Nissen-Meyer. 2002. Comparative studies of immunity proteins of pediocin-like bacteriocins. Microbiology 148:36613670.
  • Ghai, R., L. Pašić, A. B. Fernández, A.-B. Martin-Cuadrado, C. M. Mizuno, K. D. McMahon, et al. 2011. New abundant microbial groups in aquatic hypersaline environments. Sci. Rep. 1: 135. doi:10.1038/srep00135.
  • Gonzalez, C., C. Gutierrez, and C. Ramirez. 1978. Halobacterium vallismortis sp. nov. An amolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can. J. Microbiol. 24:710715.
  • Guixa-Boixareu, N., J. I. Calderón-Paz, M. Heldal, G. Bratbak, and C. Pedrós-Alió. 1996. Viral lysis and bacterivory as prokaryotic loss factors along a salinity gradient. Aquat. Microb. Ecol. 11:215227.
  • Hauer, G., and A. Rogerson. 2005. Heterotrophic protozoa from hypersaline environments. Pp. 519539 in N. Gunde-Cimerman, A. Oren and A. Plemenitas, eds. Adaptation to life at high salt concentrations in archaea, bacteria, and eukarya. Springer, Dordrecht, The Netherlands.
  • Javor, B., C. Requadt, and W. Stoeckenius. 1982. Box-shaped, halophilic bacteria. J. Bacteriol. 151:15321542.
  • Juez, G., F. Rodríguez-Valera, A. Ventosa, and D. J. Kushner. 1986. Haloarcula hispanica spec. nov. and Haloferax gibbonsii spec. nov., two new species of extremely halophilic archaebacteria. Syst. Appl. Microbiol. 8:7579.
  • Kavitha, P., A. P. Lipton, A. R. Sarika, and M. S. Aishwarya. 2011. Growth characteristics and halocin production by a new isolate, Haloferax volcanii KPS1 from Kovalam solar saltern (India). Res. J. Biol. Sci. 6:257262.
  • Kirkup, B. C., and M. A. Riley. 2004. Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo. Nature 428:412414.
  • Kis-Papo, T., and A. Oren. 2000. Halocins: are they involved in the competition between halobacteria in saltern ponds? Extremophiles 4:3541.
  • Kukkaro, P., and D. H. Bamford. 2009. Virus-host interactions in environments with a wide range of ionic strenghts. Environ. Microbiol. Rep. 1:7177.
  • Litchfield, C. D., and P. M. Gillevet. 2002. Microbial diversity and complexity in hypersaline environments: a preliminary assessment. J. Ind. Microbiol. Biotechnol. 28:4855.
  • Madera, C., P. Garcia, A. Rodriguez, J. E. Suarez, and B. Martinez. 2009. Prophage induction in Lactococcus lactis by the bacteriocin Lactococcin 972. Int. J. Food Microbiol. 129:99102.
  • Meseguer, I., and F. Rodríguez-Valera. 1985. Production and purification of halocin H4. FEMS Microbiol. Lett. 28:177182.
  • Meseguer, I., F. Rodríguez-Valera, and A. Ventosa. 1986. Antagonistic interactions among halobacteria due to halocin production. FEMS Microbiol. Lett. 36:177182.
  • Meseguer, I., M. Torreblanca, and T. Konishi. 1995. Specific inhibition of the haloarchaeal Na+/H+ antiporter by halocin H6. J. Biol. Chem. 270:64506455.
  • Moll, G. N., W. N. Konings, and A. J. Driessen. 1999. Bacteriocins: mechanism of membrane insertion and pore formation. Antonie Van Leeuwenhoek 76:185198.
  • Mylvaganam, S., and P. P. Dennis. 1992. Sequence heterogeneity between the two genes encoding 16S rRNA from the halophilic archaebacterium Haloarcula marismortui. Genetics 130:399410.
  • Nissen-Meyer, J., and I. F. Nes. 1997. Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action. Arch. Microbiol. 167:6777.
  • Nuttall, S. D., and M. L. Dyall-Smith. 1993. HF1 and HF2: novel bacteriophages of halophilic archaea. Virology 197:678684.
  • O'Connor, E. M., and R. F. Shand. 2002. Halocins and sulfolobicins: the emerging story of archaeal protein and peptide antibiotics. J. Ind. Microbiol. Biotechnol. 28:2331.
  • Oren, A. 1983. Halobacterium sodomense sp. nov., a Dead Sea halobacterium with an extremely high magnesium requirement. Int. J. Syst. Bacteriol. 33:381386.
  • Oren, A. 2002a. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J. Ind. Microbiol. Biotechnol. 28:5663.
  • Oren, A. 2002b. Molecular ecology of extremely halophilic archaea and bacteria. FEMS Microbiol. Ecol. 39:17.
  • Oren, A. 2008. Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Systems 4:213.
  • Oren, A., M. Ginzburg, L. I. Hochstein, and B. E. Volcani. 1990. Haloarcula marismortui (Volcani) sp. nov., nom. rev., an extremely halophilic bacterium from the Dead Sea. Int. J. Syst. Bacteriol. 40:209210.
  • Oren, A., A. Ventosa, M. C. Gutierrez, and M. Kamekura. 1999. Haloarcula quadrata sp. nov., a square, motile archaeon isolated from a brine pool in Sinai (Egypt). Int. J. Syst. Bacteriol. 49:11491155.
  • Pašić, L., B. H. Velikonja, and N. P. Ulrich. 2008. Optimization of the culture conditions for the production of a bacteriocin from halophilic archaeon Sech7a. Prep. Biochem. Biotechnol. 38:229245.
  • Pietilä, M. K., E. Roine, L. Paulin, N. Kalkkinen, and D. H. Bamford. 2009. An ssDNA virus infecting archaea: a new lineage of viruses with a membrane envelope. Mol. Microbiol. 72:307319.
  • Prangishvili, D., I. Holz, E. Stieger, S. Nickell, J. K. Kristjansson, and W. Zillig. 2000. Sulfolobicins, specific proteinaceous toxins produced by strains of the extremely thermophilic archaeal genus Sulfolobus. J. Bacteriol. 182:29852988.
  • Riley, M. A. 1998. Molecular mechanisms of bacteriocin evolution. Ann. Rev. Genet. 32:255278.
  • Riley, M. A., and J. E. Wertz. 2002. Bacteriocins: evolution, ecology, and application. Annu. Rev. Microbiol. 56:117137.
  • Rodríguez-Valera, F., G. Juez, and D. J. Kushner. 1982. Halocins: salt-dependent bacteriocins produced by extremely halophilic rods. Can. J. Microbiol. 28:151154.
  • Rodríguez-Valera, F., A. B. Martin-Cuadrado, B. Rodriguez-Brito, L. Pasić, F. D. Thingstad, F. Rohwer, et al. 2009. Explaining microbial population genomics through phage predation. Nat. Rev. Microbiol. 7:828836.
  • Roine, E., and H. M. Oksanen. 2011. Viruses from the hypersaline environment. Pp. 153172 in A. Ventosa, A. Oren and Y. Ma, eds. Halophiles and hypersaline environments: current research and future trends. Springer, Heidelberg, Germany.
  • Sabet, S., L. Diallo, L. Hays, W. Jung, and J. G. Dillon. 2009. Characterization of halophiles isolated from solar salterns in Baja California, Mexico. Extremophiles 13:643656.
  • Shand, R. F., and K. J. Leyva. 2007. Peptide and protein antibiotics from the domain Archaea: halocins and sulfolobicins. Pp. 93109 in M. A. Riley and M. A. Chavan, eds. Bacteriocins: ecology and evolution. Springer, New York, NY.
  • Shand, R. F., and K. J. Leyva. 2008. Archaeal antimicrobials: an undiscovered country. Pp. 233243 in P. Blum, ed. Archaea: new models for prokaryotic biology. Caister Academic Press, Norfolk, U.K.
  • Sun, C., Y. Li, S. Mei, Q. Lu, L. Zhou, and H. Xiang. 2005. A single gene directs both production and immunity of halocin C8 in a haloarchaeal strain AS7092. Mol. Microbiol. 57:537549.
  • Tagg, J. R., A. S. Dajani, and L. W. Wannamaker. 1976. Bacteriocins of gram-positive bacteria. Bacteriol. Rev. 40:722756.
  • Takashina, T., T. Hamamoto, K. Otozai, W. D. Grant, and K. Horikoshi. 1990. Haloarcula japonica sp. nov., a new triangular halophilic archaebacterium. Syst. Appl. Microbiol. 13:177181.
  • Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:27312739.
  • Torreblanca, M., I. Meseguer, and A. Ventosa. 1994. Production of halocin is a practically universal feature of archaeal halophilic rods. Lett. Appl. Microbiol. 19:201205.
  • Torreblanca, M., F. Rodríguez-Valera, G. Juez, A. Ventosa, M. Kamekura, and M. Kates. 1986. Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. Syst. Appl. Microbiol. 8:8999.
  • Veesler, D., and C. Cambillau. 2011. A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries. Microbiol. Mol. Biol. Rev. 75:423433.
  • Ventosa, A. 2006. Unusual micro-organisms from unusual habitats: hypersaline environments. Pp. 223230 in N. A. Logan, H. M. Lappin-Scott and P. C. F. Oyston, eds. Prokaryotic diversity: mechanisms and significance. Cambridge University Press, Cambridge, U.K.
  • Wachsman, M. B., M. E. Farias, E. Takeda, F. Sesma, A. P. de Ruiz Holgado, R. A. de Torres, et al. 1999. Antiviral activity of enterocin CRL35 against herpesviruses. Int. J. Antimicrob. Agents 12:293299.
  • Wachsman, M. B., V. Castilla, A. P. de Ruiz Holgado, R. A. de Torres, F. Sesma, and C. E. Coto. 2003. Enterocin CRL35 inhibits late stages of HSV-1 and HSV-2 replication in vitro. Antiviral Res. 58:1724.
  • Yamada, K., M. Hirota, Y. Niimi, H. A. Nguyen, Y. Takahara, Y. Kamio, et al. 2006. Nucleotide sequences and organization of the genes for carotovoricin (Ctv) from Erwinia carotovora indicate that Ctv evolved from the same ancestor as Salmonella typhi prophage. Biosci. Biotechnol. Biochem. 70:22362247.