• Anand, A., S. R. Uppalapati, C. M. Ryu, S. N. Allen, L. Kang, Y. Tang, et al. 2008. Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens. Plant Physiol. 146:703715.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248254.
  • Chen, C. Y., and S. C. Winans. 1991. Controlled expression of the transcriptional activator gene virG in Agrobacterium tumefaciens by using the Escherichia coli lac promoter. J. Bacteriol. 173:11391144.
  • Davis, M. E., A. R. Miller, and R. D. Lineberger. 1992. Studies on the Effects of Ethylene on Transformation of Tomato Cotyledons (Lycopersicon esculentum Mill.) by Agrobacterium tumefaciens. J. Plant Pysiol. 139:309312.
  • Deblaere, R., B. Bytebier, H. D. Greve, F. Deboeck, J. Schell, M. V. Montagu, et al. 1985. Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucleic Acids Res. 13:47774788.
  • Ezura, H., K. Yuhashi, T. Yasuta, and K. Minamisawa. 2000. Effect of ethylene on Agrobacterium tumefaciens-mediated gene transfer to melon. Plant Breed. 119:7579.
  • Han, J. S., C. K. Kim, S. H. Park, K. D. Hirschi, and I. Mok. 2005. Agrobacterium-mediated transformation of bottle gourd (Lagenaria siceraria Standl.). Plant Cell Rep. 23:692698.
  • Hao, Y., T. C. Charles, and B. R. Glick. 2010. ACC deaminase increases the Agrobacterium tumefaciens-mediated transformation frequency of commercial canola cultivars. FEMS Microbiol. Lett. 307:185190.
  • Honma, S., and T. Shimomura. 1978. Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric. Biol. Chem. 42:18251831.
  • Hoshikawa, K., G. Ishihara, H. Takahashi, and I. Nakamura. 2012. Enhanced resistance to gray mold (Botrytis cinerea) in transgenic potato plants expressing thionin genes isolated from Brassicaceae species. Plant Biotechnol. 29:8793.
  • Hwang, H. H., M. H. Wang, Y. L. Lee, Y. L. Tsai, Y. H. Li, F. J. Yang, et al. 2010. Agrobacterium-produced and exogenous cytokinin-modulated Agrobacterium-mediated plant transformation. Mol. Plant Pathol. 11:677690.
  • Klüsener, S., S. Hacker, Y. L. Tsai, J. E. Bandow, R. Gust, E. M. Lai, et al. 2010. Proteomic and transcriptomic characterization of a virulence-deficient phosphatidylcholine-negative Agrobacterium tumefaciens mutant. Mol. Genet. Genomics 283:575589.
  • Kovach, M. E., P. H. Elzer, D. S. Hill, G. T. Robertson, M. A. Farris, R. M. 2nd Roop, et al. 1995. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175176.
  • Lee, C. W., M. Efetova, J. C. Engelmann, R. Kramell, C. Wasternack, J. Ludwig-Müller, et al. 2009. Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana. Plant Cell 21:29482962.
  • Murashige, T., and F. Skoog. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15:473497.
  • Nonaka, S., K. Yuhashi, K. Takada, M. Sugaware, K. Minamisawa, and H. Ezura. 2008a. Ethylene production in plants during transformation suppresses vir gene expression in Agrobacterium tumefaciens. New Phytol. 178:647656.
  • Nonaka, S., M. Sugawara, K. Minamisawa, K. Yuhashi, and H. Ezura. 2008b. 1-Aminocyclopropane-1-carboxylate deaminase enhances Agrobacterium tumefaciens-mediated gene transfer into plant cells. Appl. Environ. Microbiol. 74:25262528.
  • Ntui, V. O., R. S. Khan, D. P. Chin, I. Nakamura, and M. Mii. 2010. An efficient Agrobacterium tumefaciens-mediated genetic transformation of “Egusi” melon (Colocynthis citrullus L.). Plant Cell Organ Cult. 103:1522.
  • Ohta, S., S. Mita, T. Hattori, and K. Nakamura. 1990. Construction and expression in tobacco of a β-glucuronidase (GUS) reporter gene containing an intron within the coding sequence. Plant Cell Physiol. 31:805813.
  • Pitzschke, A., and H. Hirt. 2010. New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation. EMBO J. 29:10211032.
  • Rico, A., M. H. Bennett, S. Forcat, W. E. Huang, and G. M. Preston. 2010. Agroinfiltration reduces ABA levels and suppresses Pseudomonas syringae-elicited salicylic acid production in Nicotiana tabacum. PLoS ONE 5:e8977.
  • Stachel, S. E., E. Messens, M. V. Montagu, and P. Zambryski. 1985. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium mumefaciens. Nature 318:624629.
  • Steck, T. R., P. Morel, and C. I. Kado. 1988. Vir box sequences in Agrobacterium tumefaciens pTiC58 and A6. Nucleic Acids Res. 16:8736.
  • Tzfira, T., J. Li, B. Lacroix, and V. Citovsky. 2004. Agrobacterium T-DNA integration: molecules and models. Trends Genet. 20:375383.
  • Yuan, Z. C., M. P. Edlind, P. Liu, P. Saenkham, L. M. Banta, A. A. Wise, et al. 2007. The plant signal salicylic acid shuts down expression of the vir regulon and activates quormone-quenching genes in Agrobacterium. Proc. Natl. Acad. Sci. USA 104:1179011795.