SEARCH

SEARCH BY CITATION

References

  • Angeby, K. A. K., L. Klintz, and S. E. Hoffner. 2002. Rapid and inexpensive drug susceptibility testing of Mycobacterium tuberculosis with a nitrate reductase assay. J. Clin. Microbiol. 40:553555.
  • Battistuzzi, G., M. Bellei, C. A. Bortolotti, and M. Sola. 2010. Redox properties of heme peroxidases. Arch. Biochem. Biophys. 500:2136.
  • Baulard, A. R., J. C. Betts, J. Engohang-Ndong, S. Quan, R. A. McAdam, P. J. Brennan, et al. 2000. Activation of the pro-drug ethionamide is regulated in mycobacteria. J. Biol. Chem. 275:2832628331.
  • van den Boogaard, J., R. Lyimo, C. F. Irongo, M. J. Boeree, H. Schaalma, R. E. Aarnoutse, et al. 2009. Community vs. facility-based directly observed treatment for tuberculosis in Tanzania's Kilimanjaro Region. Int. J. Tuberc. Lung Dis. 13:15241529.
  • Cade, C. E., A. C. Dlouhy, K. F. Medzihradszky, S. P. Salas-Castillo, and R. A. Ghiladi. 2010 Isoniazid-resistance conferring mutations in Mycobacterium tuberculosis KatG: catalase, peroxidase, and INH-NADH adduct formation activities. Protein Sci.. 458474.
  • Choi, H.-S., P. R. Rai, H. W. Chu, C. Cool, and E. D. Chan. 2002. Analysis of nitric oxide synthase and nitrotyrosine expression in human pulmonary tuberculosis. Am. J. Respir. Crit. Care Med. 166:178186.
  • Corker, H. 2003. Nitric oxide formation by Escherichia coli: dependence on nitrite reductase, the no-sensing regulator Fnr, and flavohemoglobin Hmp. J. Biol. Chem. 278:3158431592.
  • DeBarber, A. E., K. Mdluli, M. Bosman, L. G. Bekker, and C. E. Barry. 2000. Ethionamide activation and sensitivity in multidrug-resistant Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 97:96779682.
  • Dhar, N., and J. D. McKinney. 2010. Mycobacterium tuberculosis persistence mutants identified by screening in isoniazid-treated mice. Proc. Natl. Acad. Sci. USA 107:1227512280.
  • Eiserich, J. P., M. Hristova, C. E. Cross, A. D. Jones, B. A. Freeman, B. Halliwell, et al. 1998. Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature 391:393397.
  • Fenhalls, G., L. Stevens, L. Moses, J. Bezuidenhout, J. C. Betts, P. V. Helden Pv, et al. 2002. In situ detection of Mycobacterium tuberculosis transcripts in human lung granulomas reveals differential gene expression in necrotic lesions. Infect. Immun. 70:63306338.
  • Ghiladi, R. A., K. F. Medzihradszky, F. M. Rusnak, and P. R. Ortiz de Montellano. 2005. Correlation between isoniazid resistance and superoxide reactivity in Mycobacterium tuberculosis KatG. J. Am. Chem. Soc. 127:1342813442.
  • Giffin, M. M., R. W. Raab, M. Morganstern, and C. D. Sohaskey. 2012. Mutational analysis of the respiratory nitrate transporter NarK2 of Mycobacterium tuberculosis. PLoS One 7:e45459.
  • Hazbon, M. H., M. Brimacombe, M. Bobadilla del Valle, M. Cavatore, M. I. Guerrero, M. Varma-Basil, et al. 2006. Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 50:26402649.
  • Klebanoff, S. J. 1993. Reactive nitrogen intermediates and antimicrobial activity: role of nitrite. Free Radic. Biol. Med. 14:351360.
  • Lundberg, J. O., and E. Weitzberg. 2010. NO-synthase independent NO generation in mammals. Biochem. Biophys. Res. Commun. 396:3945.
  • Lundberg, J. O., E. Weitzberg, and M. T. Gladwin. 2008. The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discov. 7:156167.
  • Lundberg, J.O., M.T. Gladwin, A. Ahluwalia, N. Benjamin, N. S. Bryan, A. Butler, et al. 2009 Nitrate and nitrite in biology, nutrition and therapeutics. Nat. Chem. Biol. 5:865869.
  • Musser, J. M., V. Kapur, D. L. Williams, B. N. Kreiswirth, D. van Soolingen, and J. D. van Embden. 1996. Characterization of the catalase-peroxidase gene (katG) and inhA locus in isoniazid-resistant and -susceptible strains of Mycobacterium tuberculosis by automated DNA sequencing: restricted array of mutations associated with drug resistance. J. Infect. Dis. 173:196202.
  • Nathan, C., and M. U. Shiloh. 2000. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl. Acad. Sci. USA 97:88418848.
  • Nicholson, S., M. D. G. Bonecini-Almeida, J. R. Lapa e Silva, C. Nathan, Q. W. Xie, R. Mumford, et al. 1996 Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J. Exp. Med. 183: 22932302.
  • Pacelli, R., D. A. Wink, J. A. Cook, M. C. Krishna, W. DeGraff, N. Friedman, et al. 1995. Nitric oxide potentiates hydrogen peroxide-induced killing of Escherichia coli. J. Exp. Med. 182:14691479.
  • Rachman, H., M. Strong, T. Ulrichs, L. Grode, J. Schuchhardt, H. Mollenkopf, et al. 2006. Unique transcriptome signature of Mycobacterium tuberculosis in pulmonary tuberculosis. Infect. Immun. 74:12331242.
  • Ralt, D., J. S. Wishnok, R. Fitts, and S. R. Tannenbaum. 1988. Bacterial catalysis of nitrosation: involvement of the nar operon of Escherichia coli. J. Bacteriol. 170:359364.
  • Rhee, K. Y., H. Erdjument-Bromage, P. Tempst, and C. F. Nathan. 2005. S-nitroso proteome of Mycobacterium tuberculosis: enzymes of intermediary metabolism and antioxidant defense. Proc. Natl. Acad. Sci. USA 102:467472.
  • Rozwarski, D. A. 1998. Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science 279:98102.
  • Saint-Joanis, B., H. Souchon, M. Wilming, K. Johnsson, P. M. Alzari, and S. T. Cole. 1999. Use of site-directed mutagenesis to probe the structure, function and isoniazid activation of the catalase/peroxidase, KatG, from Mycobacterium tuberculosis. Biochem. J. 338:753760.
  • Seth, D., A. Hausladen, Y. J. Wang, and J. S. Stamler. 2012. Endogenous protein S-Nitrosylation in E. coli: regulation by OxyR. Science 336:470473.
  • Sherman, D. R., M. Voskuil, D. Schnappinger, R. Liao, M. I. Harrell, and G. K. Schoolnik. 2001. Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha -crystallin. Proc. Natl. Acad. Sci. USA 98:75347539.
  • Shi, L., C. D. Sohaskey, B. D. Kana, S. Dawes, R. J. North, V. Mizrahi, et al. 2005. Changes in energy metabolism of Mycobacterium tuberculosis in mouse lung and under in vitro conditions affecting aerobic respiration. Proc. Natl Acad. Sci. USA 102:1562915634.
  • Sohaskey, C. D., and L. G. Wayne. 2003. Role of narK2X and narGHJI in hypoxic upregulation of nitrate reduction by Mycobacterium tuberculosis. J. Bacteriol. 185:72477256.
  • Stermann, M., A. Bohrssen, C. Diephaus, S. Maass, and F.-C. Bange. 2003. Polymorphic nucleotide within the promoter of nitrate reductase (NarGHJI) is specific for Mycobacterium tuberculosis. J. Clin. Microbiol. 41:32523259.
  • Venugopal, A., R. Bryk, S. Shi, K. Rhee, P. Rath, D. Schnappinger, et al. 2011. Virulence of Mycobacterium tuberculosis depends on lipoamide dehydrogenase, a member of three multienzyme complexes. Cell Host Microbe 9:2131.
  • Vilcheze, C., Y. Av-Gay, S. W. Barnes, M. H. Larsen, J. R. Walker, R. J. Glynne, et al. 2011a. Coresistance to isoniazid and ethionamide maps to mycothiol biosynthetic genes in Mycobacterium bovis. Antimicrob. Agents Chemother. 55:44224423.
  • Vilcheze, C., A. D. Baughn, J. Tufariello, L. W. Leung, M. Kuo, C. F. Basler, et al. 2011b. Novel inhibitors of InhA efficiently kill Mycobacterium tuberculosis under aerobic and anaerobic conditions. Antimicrob. Agents Chemother. 55:38893898.
  • Vilchèze, C., T. R. Weisbrod, B. Chen, L. Kremer, M. H. Hazbón, F. Wang, et al. 2005. Altered NADH/NAD+ ratio mediates coresistance to isoniazid and ethionamide in mycobacteria. Antimicrob. Agents Chemother. 49:708720.
  • van der Vliet, A., J. P. Eiserich, B. Halliwell, and C. E. Cross. 1997. Formation of reactive nitrogen species during peroxidase-catalyzed oxidation of nitrite. A potential additional mechanism of nitric oxide-dependent toxicity. J. Biol. Chem. 272:76177625.
  • Vogt, G., and C. Nathan. 2011. In vitro differentiation of human macrophages with enhanced antimycobacterial activity. J. Clin. Invest. 121:38893901.
  • Voskuil, M. I., D. Schnappinger, K. C. Visconti, M. I. Harrell, G. M. Dolganov, D. R. Sherman, et al. 2003. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J. Exp. Med. 198:705713.
  • Wanger, A., and K. Mills. 1996. Testing of Mycobacterium tuberculosis susceptibility to ethambutol, isoniazid, rifampin, and streptomycin by using Etest. J. Clin. Microbiol. 34:16721676.
  • Wayne, L. G., and L. G. Hayes. 1998. Nitrate reduction as a marker for hypoxic shiftdown of Mycobacterium tuberculosis. Tuber. Lung Dis. 79:127132.
  • Wayne, L. G., and C. D. Sohaskey. 2001. Nonreplicating persistence of Mycobacterium tuberculosis. Annu. Rev. Microbiol. 55:139163.
  • Wengenack, N. L., B. D. Lane, P. J. Hill, J. R. Uhl, G. S. Lukat-Rodgers, L. Hall, et al. 2004. Purification and characterization of Mycobacterium tuberculosis KatG, KatG(S315T), and Mycobacterium bovis KatG(R463L). Protein Expr. Purif. 36:232243.
  • Wilson, M., J. DeRisi, H. H. Kristensen, P. Imboden, S. Rane, P. O. Brown, et al. 1999. Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc. Natl Acad. Sci. USA 96:1283312838.
  • Winder, F. G., and P. B. Collins. 1970. Inhibition by isoniazid of synthesis of mycolic acids in Mycobacterium tuberculosis. J. Gen. Microbiol. 63:4148.
  • Woodmansee, A. N., and J. A. Imlay. 2003. A mechanism by which nitric oxide accelerates the rate of oxidative DNA damage in Escherichia coli. Mol. Microbiol. 49:1122.
  • Zumla, A., M. Raviglione, R. Hafner, and C. Fordham von Reyn. 2013. Tuberculosis. N. Engl. J. Med. 368:745755.