SEARCH

SEARCH BY CITATION

References

  • Ademe 1999. Composition des ordures ménagères en France(données et références).
  • Amann, R. I., W. Ludwig, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143169.
  • Antoni, D., V. V. Zverlov, and W. H. Schwarz. 2007. Biofuels from microbes. Appl. Microbiol. Biotechnol. 77:2335.
  • Artiguenave, F., P. Wincker, P. Brottier, S. Duprat, F. Jovelin, C. Scarpelli, et al. 2000. Genomic exploration of the hemiascomycetous yeasts: 2. Data generation and processing. FEBS Lett. 487:1316.
  • Barlaz, M. A., D. M. Schaefer, and R. K. Ham. 1989. Bacterial population development and chemical characteristics of refuse decomposition in a simulated sanitary landfill. Appl. Environ. Microbiol. 55:5565.
  • Behrens, S., B. M. Fuchs, F. Mueller, and R. Amann. 2003. Is the in situ accessibility of the 16S rRNA of Escherichia coli for Cy3-labeled oligonucleotide probes predicted by a three-dimensional structure model of the 30S ribosomal subunit? Appl. Environ. Microbiol. 69:49354941.
  • Behrens, S., T. Losekann, J. Pett-Ridge, P. K. Weber, W. O.Ng, B. S. Stevenson, et al. 2008. Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and NanoSIMS. Appl. Environ. Microbiol. 74:31433150.
  • Braun, M., F. Mayer, and G. Gottschalk. 1981. Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide. Arch. Microbiol. 128:288293.
  • Buckley, D. H., V. Huangyutitham, S. F. Hsu, and T. A.Nelson. 2007. Stable isotope probing with 15N achieved by disentangling the effects of genome G+C content and isotope enrichment on DNA density. Appl. Environ. Microbiol. 73:31893195.
  • Burrell, P. C., C. O'Sullivan, H. Song, W. P. Clarke, and L. L.Blackall. 2004. Identification, detection, and spatial resolution of clostridium populations responsible for cellulose degradation in a methanogenic landfill leachate bioreactor. Appl. Environ. Microbiol. 70:24142419.
  • Chouari, R., D. Le Paslier, C. Dauga, P. Daegelen, J.Weissenbach, and A. Sghir. 2005. Novel major bacterial candidate division within a municipal anaerobic sludge digester. Appl. Environ. Microbiol. 71:21452153.
  • Daims, H., A. Bruhl, R. Amann, K. H. Schleifer, and M.Wagner. 1999. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22:434444.
  • Elshahed, M. S., N. H. Youssef, Q. Luo, F. Z. Najar, B. A. Roe, T. M. Sisk, et al. 2007. Phylogenetic and metabolic diversity of Planctomycetes from anaerobic, sulfide- and sulfur-rich Zodletone Spring, Oklahoma. Appl. Environ. Microbiol. 73:47074716.
  • Ferry, J. G. 1997. Methane: small molecule, big impact. Science 278:14131414.
  • Gagnaire, D. Y., and F. R. Taravel. 1980. Biosynthesis of bacterial cellulose from D-glucose uniformly enriched in 13C. Eur. J. Biochem. 103:133143.
  • Goebel, B. M., and E. Stackebrandt. 1994. Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl. Environ. Microbiol. 60:16141621.
  • Guedon, E., M. Desvaux, and H. Petitdemange. 2002. Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl. Environ. Microbiol. 68:5358.
  • Hattori, S., A. S. Galushko, Y. Kamagata, and B. Schink. 2005. Operation of the CO dehydrogenase/acetyl coenzyme A pathway in both acetate oxidation and acetate formation by the syntrophically acetate-oxidizing bacterium Thermacetogenium phaeum. J. Bacteriol. 187:34713476.
  • Li, T., T.-D. Wu, L. Mafzéas, L. Toffin, J.-L. Guerquin-Kern, G. Leblon, et al. 2008. Simultaneous analysis of microbial identity and function using NanoSIMS. Environ. Microbiol. 10:580588.
  • Li, T., L. Mazéas, A. Sghir, G. Leblon, and T. Bouchez. 2009. Insights into networks of functional microbes catalysing methanization of cellulose under mesophilic conditions. Environ. Microbiol. 11:889904.
  • Liu, G., R. Zhang, H. M. El-Mashad, and R. Dong. 2009. Effect of feed to inoculum ratios on biogas yields of food and green wastes. Bioresour. Technol. 100:51035108.
  • Ludwig, W., O. Strunk, R. Westram, L. Richter, H. Meier,   Yadhukumar, et al. 2004. ARB: a software environment for sequence data. Nucleic Acids Res. 32:13631371.
  • Lynd, L. R., P. J. Weimer, W. H. van Zyl, and I. S.Pretorius. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66:506577.
  • McKendry, P. 2002. Energy production from biomass (Part 1): overview of biomass. Bioresour. Technol. 83:3746.
  • Nakatsu, C. H., and L. J. Forney. 1996. Parameters of nucleic acid hybridization experiments. Pp. 112 in A. D. Akkermans, J. D van Elsas and F. J de Bruijn, eds. Molecular microbial ecology manual. Kluwer Academic Publishers, Dordrecht, The Netherlands.
  • Neef, A., R. Amann, H. Schlesner, and K. H. Schleifer. 1998. Monitoring a widespread bacterial group: in situ detection of planctomycetes with 16S rRNA-targeted probes. Microbiology 144(Pt. 12):32573266.
  • Ni, B. J., H. Liu, Y. Q. Nie, R. J. Zeng, G. C. Du, J. Chen, et al. 2011. Coupling glucose fermentation and homoacetogenesis for elevated acetate production: experimental and mathematical approaches. Biotechnol. Bioeng. 108:345353.
  • Olsen, G. J., H. Matsuda, R. Hagstrom, and R. Overbeek. 1994. fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput. Appl. Biosci. 10:4148.
  • O'Sullivan, C. A., P. C. Burrell, W. P. Clarke, and L. L.Blackall. 2005. Structure of a cellulose degrading bacterial community during anaerobic digestion. Biotechnol. Bioeng. 92:871878.
  • Pavlostathis, S. G., T. L. Miller, and M. J. Wolin. 1988. Fermentation of insoluble cellulose by continuous cultures of ruminococcus albus. Appl. Environ. Microbiol. 54:26552659.
  • Pelletier, E., A. Kreimeyer, S. Bocs, Z. Rouy, G. Gyapay, R.Chouari, et al. 2008. “Candidatus Cloacamonas acidaminovorans”: genome sequence reconstruction provides a first glimpse of a new bacterial division. J. Bacteriol. 190:25722579.
  • Pett-Ridge, J., and P. K. Weber. 2012. NanoSIP: NanoSIMS applications for microbial biology. Methods Mol. Biol. 881:375408.
  • Qu, X., L. Mazeas, V. A. Vavilin, J. Epissard, M. Lemunier, J. M. Mouchel, et al. 2009. Combined monitoring of changes in delta13CH4 and archaeal community structure during mesophilic methanization of municipal solid waste. FEMS Microbiol. Ecol. 68:236245.
  • Radajewski, S., I. R. McDonald, and J. C. Murrell. 2003. Stable-isotope probing of nucleic acids: a window to the function of uncultured microorganisms. Curr. Opin. Biotechnol. 14:296302.
  • Riviere, D., V. Desvignes, E. Pelletier, S. Chaussonnerie, S.Guermazi, J. Weissenbach, et al. 2009. Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J. 3:700714.
  • Saitou, N., and M. Nei. 1987. The neighbour-joining method: a new method for constructing phylogenetic trees. Mol. Biol. 4:406425.
  • Schloss, P. D., and J. Handelsman. 2005. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol. 71:15011506.
  • Schmid, M. W., A. Lehner, R. Stephan, K. H. Schleifer, and H.Meier. 2005. Development and application of oligonucleotide probes for in situ detection of thermotolerant Campylobacter in chicken faecal and liver samples. Int. J. Food Microbiol. 105:245255.
  • Schwarz, W. H. 2001. The cellulosome and cellulose degradation by anaerobic bacteria. Appl. Microbiol. Biotechnol. 56:634649.
  • Swan, B. K., C. J. Ehrhardt, K. M. Reifel, L. I. Moreno, and D. L. Valentine. 2010. Archaeal and bacterial communities respond differently to environmental gradients in anoxic sediments of a California hypersaline lake, the Salton Sea. Appl. Environ. Microbiol. 76:757768.
  • Swofford, D. L. 2003. Paup*: phylogenetic analysis using parsimony (* and other methods). Version 4.0b 10. Sinauer Associates, Sunderland, MA.
  • Terron-Gonzalez, L., C. Medina, M. C. Limon-Mortes, and E.Santero. 2013. Heterologous viral expression systems in fosmid vectors increase the functional analysis potential of metagenomic libraries. Sci. Rep. 3:1107.
  • Tobino, T., F. Kurisu, I. Kasuga, and H. Furumai. 2011. Shotgun isotope array for rapid, substrate-specific detection of microorganisms in a microbial community. Appl. Environ. Microbiol. 77:74307432.