SEARCH

SEARCH BY CITATION

References

  • Aramaki, H., C. Hirata, M. Hara, M. Fujita, and Y. Sagara. 2001. Transcription analysis of rpoH in Pseudomonas putida. FEMS Microbiol. Lett. 205:165169.
  • Aspedon, A., K. Palmer, and M. Whiteley. 2006. Microarray analysis of the osmotic stress response in Pseudomonas aeruginosa. J. Bacteriol. 188:27212725.
  • Banin, E., L. M. Vasil, and E. P. Greenberg. 2005. Iron and Pseudomonas aeruginosa biofilm formation. Proc. Natl. Acad. Sci. USA 102:1107611081.
  • Booth, S. C., M. L. Workentine, J. Wen, R. Shaykhutdinov, H. J. Vogel, H. Ceri, et al. 2011. Differences in metabolism between the biofilm and planktonic response to metal stress. J. Proteome Res. 10:31903199.
  • Brinkman, F. S. L., G. Schoofs, R. E. W. Hancock, and R. De Mot. 1999. Influence of a putative ECF sigma factor on expression of the major outer membrane protein, OprF, in Pseudomonas aeruginosa and Pseudomonas fluorescens. J. Bacteriol. 181:47464754.
  • Cenens, C., R. Jenné, and J. F. van Impe. 2002. Evaluation of different shape parameters to distinguish between flocs and filaments in activated sludge images. Water Sci. Technol. 45:8591.
  • Chang, W. S., M. van de Mortel, L. Nielsen, G. N. de Guzman, X. Li, and L. J. Halverson. 2007. Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. J. Bacteriol. 189:82908299.
  • Chang, W. S., X. Li, and L. J. Halverson. 2009. Influence of water limitation on endogenous oxidative stress and cell death within unsaturated Pseudomonas putida biofilms. Environ. Microbiol. 11:14821492.
  • Chenu, C., and E. B. Roberson. 1996. Diffusion of glucose in microbial extracellular polysaccharide as affected by water potential. Soil Biol. Biochem. 28:877884.
  • Chuaqui, R. F., R. F. Bonner, C. J. Best, J. W. Gillespie, M. J. Flaig, S. M. Hewitt, et al. 2002. Post-analysis follow-up and validation of microarray experiments. Nat. Genet. 32(Suppl.):509514.
  • Cline, M. S., M. Smooth, E. Cerami, A. Kuchinsky, N. Landys, C. Workman, et al. 2007. Integration of biological networks and gene expression data using Cytoscape. Nature Prot. 2:23662382.
  • Cytryn, E. J., D. P. Sangurdekar, J. G. Streeter, W. L. Franck, W. S. Chang, G. Stacey, et al. 2007. Transcriptional and physiological responses of Bradyrhizobium japonicum to desiccation-induced stress. J. Bacteriol. 189:67516762.
  • Dechesne, A., D. Or, G. Gulez, and B. F. Smets. 2008. The Porous Surface Model: a novel experimental system for online quantitative observation of microbial processes under unsaturated conditions. Appl. Environ. Microbiol. 74:51955200.
  • Dechesne, A., G. Wang, G. Gulez, D. Or, and B. F. Smets. 2010. Hydration controlled bacterial motility and surface dispersal. Proc. Natl. Acad. Sci. USA 107:1436914372.
  • Dos Santos, V. A., S. Heim, E. R. Moore, M. Strätz, and K. N. Timmis. 2004. Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. Environ. Microbiol. 6:12641286.
  • Elbein, A. D., Y. T. Pan, I. Pastuszak, and D. Carroll. 2003. New insights ontrehalose: a multifunctional molecule. Glycobiology 13:17R27R.
  • Fernandez-Aunión, C., T.B. Hamouda, F. Iglesias-Guerra, M. Argandoña, J. J. Reina-Bueno, M. E. Aouani, et al. 2010. Biosynthesis of compatible solutes in rhizobial strains isolated from Phaseolus vulgaris nodules in Tunisian fields. BMC Microbiol. 10:192.
  • Garcia, A. H. 2011. Anhydrobiosis in bacteria: from physiology to applications. J. Biosci. 36:112.
  • Grossman, A. D., D. B. Straus, W. A. Walter, and C. Gross. 1987. Sigma 32 synthesis can regulate the synthesis of heat shock proteins in Escherichia coli. Genes Dev. 1:179184.
  • Gulez, G., A. Dechesne, and B. F. Smets. 2010. The Pressurized Porous Surface Model: an improved tool to study bacterial behavior under a wide range of environmentally relevant matric potentials. J. Microbiol. Methods 82:324326.
  • Gulez, G., A. Dechesne, C. Workman, and B. Smets. 2012. Transcriptome dynamics of Pseudomonas putida KT2440 under water stress. Appl. Environ. Microbiol. 78:676683.
  • Halverson, L. J.. 2009. Role of alginate in bacterial biofilms. Pp. 135151 in B. H. A. Rehm, ed. Alginates: biology and applications. Microbiology Monographs 13. Springer, Heidelberg.
  • Halverson, L. J., and M. K. Firestone. 2000. Differential effects of permeating and nonpermeating solutes on the fatty acid composition of Pseudomonas putida. Appl. Environ. Microbiol. 66:24142421.
  • Kets, E., E. Galinski, M. de Wit, J.A. de Bont, and H. Heipieper. 1996a. Mannitol, a novel bacterial compatible solute in Pseudomonas putida S12. J. Bacteriol. 178:66656670.
  • Kets, E. P., J. A. de Bont, and H. J. Heipieper. 1996b. Physiological response of Pseudomonas putida s12 subjected to reduced water activity. FEMS Microbiol. Lett. 139:133137.
  • Kieft, T. L., D. B. Ringelberg, and D. C. White. 1994. Changes in ester-linked phospholipid fatty acid profiles of subsurface bacteria during starvation and desiccation in a porous medium. Appl. Environ. Microbiol. 60:32923299.
  • Lau, T. C., X. A. Wu, H. Chua, P. Y. Qian, and P. K. Wong. 2005. Effect of exopolysaccharides on the adsorption of metal ions by Pseudomonas sp. CU-1. Water Sci. Tech. 52:6368.
  • Leoni, L., C. Ambrosi, A. Petrucca, and P. Visca. 2002. Trancriptional regulation of pseudobactin synthesis in the plant growth-promoting Pseudomonas B10. FEMS Microbiol. Lett. 208:219225.
  • Li, X., L. Nielsen, C. Nolan, and L. J. Halverson. 2010. Transient alginate gene expression by Pseudomonas putida biofilm residents under water-limiting conditions reflects adaptation to the local environment. Environ. Microbiol. 12:15781590.
  • Livak, K. J., and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2^ddCT method. Methods 25:402408.
  • Mailloux, R. J., R. Singh, G. Brewer, C. Auger, J. Lemire, and V. D. Appanna. 2009. Α-ketoglutarate dehydrogenase and glutamate dehydrogenase work in tandem to modulate the antioxidant α-ketoglutarate during oxidative stress in Pseudomonas fluorescens. J. Bacteriol. 191:38043810.
  • Manzanera, M., I. Aranda-Olmedo, J. L. Ramos, and S. Marques. 2001. Molecular characterization of Pseudomonas putida KT2440 rpoH gene regulation. Microbiology 147:13231330.
  • Matilla, M. A., J. L. Ramos, E. Duque, J. de Dios Alche, M. Espinosa-Urgel, and M. I. Ramos-Gonzalez. 2007. Temperature and pyoverdine mediated iron acquisition control surface motility of Pseudomonas putida. Environ. Microbiol. 9:18421850.
  • Morey, J. S., J. C. Ryan, and F. M. van Dolah. 2006. Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR. Biol. Proceed. 8:175193.
  • van de Mortel, M., and L. J. Halverson. 2004. Cell envelope components contributing to biofilm growth and survival of Pseudomonas putida in low-water-content habitats. Mol. Microbiol. 52:735750.
  • van de Mortel, M., W. S. Chang, and L. J. Halverson. 2004. Differential tolerance of Pseudomonas putida biofilm and planktonic cells to desiccation. Biofilms 1:361368.
  • Nadell, C. D., and L. B. Bassler. 2011. A fitness trade-off between local competition and dispersal in Vibrio cholerae biofilms. Proc. Natl. Acad. Sci. USA 108:1418114185.
  • Nelson, K. E., C. Weinel, I. T. Paulsen, R. J. Dodson, H. Hilbert, V. A. Martins dos Santos, et al. 2002. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol. 4:799808.
  • Nielsen, L., X. Li, and L. J. Halverson. 2011. Cell–cell and cell–surface interactions mediated by cellulose and a novel exopolysaccharide contribute to Pseudomonas putida biofilm formation and fitness under water-limiting conditions. Environ. Microbiol. 13:13421356.
  • Nilsson, M., W.C. Chiang, M. Fazli, M. Gjermansen, M. Givskov, and T. Tolker-Nielsen. 2011. Influence of putative exopolysaccharide genes on Pseudomonas putida KT2440 biofilm stability. Environ. Microbiol. 13:13571369.
  • Or, D., S. Phutane, and A. Dechesne. 2007. Extracellular polymeric substances affecting pore-scale hydrologic conditions for bacterial activity in unsaturated soils. Vadose Zone J. 6:298305.
  • Papendick, R. I., and G. S. Campbell. 1981. Theory and measurement of water potential. Pp. 123 in J. F. Parr, W. R. Gardner and L. F. Elliot, eds. Water potential relations in soil microbiology. Soil Science Society of America, Madison, WI.
  • Park, S. J., J. S. Choi, B. C. Kim, S. W. Jho, J. W. Ryu, D. Park, et al. 2009. PutidaNET: interactome database service and network analysis of Pseudomonas putida KT2440. BMC Genomics 10(Suppl. 3):S18.
  • Potts, M. 1994. Desiccation tolerance of prokaryotes. Microbiol. Rev. 58:755805.
  • Potts, M., S. M. Slaughter, F. Hunneke, J. F. Garst, and R. F. Helm. 2005. Desiccation tolerance of prokaryotes: application of principles to human cells. Integr. Comp. Biol. 45:800809.
  • Rasband, W. S. 1997–2012. ImageJ. U. S. National Institutes of Health, Bethesda, MD, http://imagej.nih.gov/ij/.
  • Remminghorst, U., and B. H. A. Rehm. 2006. Bacterial alginates: from biosynthesis to applications. Biotechnol. Lett. 28:17011712.
  • Roberson, E. B., and M. K. Firestone. 1992. Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl. Environ. Microbiol. 58:12841291.
  • Schurr, M. J., and V. Deretic. 1997. Microbial pathogenesis in cystic fibrosis: coordinate regulation of heat-shock response and conversion to mucoidy in Pseudomonas aeruginosa. Mol. Microbiol. 24:411420.
  • Sutherland, I. W. 2001. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:39.
  • Tuller, M., D. Or, and L. M. Dudley. 1999. Adsorption and capillary condensation in porous media: liquid retention and interfacial configurations in angular pores. Water Resour. Res. 35:19491964.
  • Ueshima, M., B. R. Ginn, E. A. Haack, J. E. S. Szymanowski, and J. B. Fein. 2008. Cd adsorption onto Pseudomonas putida in the presence and absence of extracellular polymeric substances. Geochim. Cosmochim. Acta 72:58855895.
  • Wilkinson, J. F. 1958. The extracellular polysaccharides of bacteria. Bacteriol. Rev. 22:4673.
  • Wozniak, D. J., and D. E. Ohman. 1994. Transcriptional analysis of the Pseudomonas aeruginosa genes algR, algB, and algD reveals a hierarchy of alginate gene expression which is modulated by algT. J. Bacteriol. 176:60076014.
  • Xie, Z. D., C. D. Hershberger, S. Shankar, R. W. Ye, and A. M. Chakrabarty. 1996. Sigma factor-anti-sigma factor interaction in alginate synthesis: inhibition of AlgT by MucA. J. Bacteriol. 178:49904996.