SEARCH

SEARCH BY CITATION

References

  • Bansal-Mutalik, R., and H. Nikaido. 2011. Quantitative lipid composition of cell envelopes of Corynebacterium glutamicum elucidated through reverse micelle extraction. Proc. Natl. Acad. Sci. USA 108:1536015365.
  • Brand, S., K. Niehaus, A. Pühler, and J. Kalinowski. 2003. Identification and functional analysis of six mycolyltransferase genes of Corynebacterium glutamicum ATCC 13032: the genes cop1, cmt1, and cmt2 can replace each other in the synthesis of trehalose dicorynomycolate, a component of the mycolic acid layer of the cell envelope. Arch. Microbiol. 180:3344.
  • Brennan, P. J. 2003. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis (Edinb) 83:9197.
  • Converse, S. E., J. D. Mougous, M. D. Leavell, J. A. Leary, C. R. Bertozzi, and J. S. Cox. 2003. MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence. Proc. Natl. Acad. Sci. USA 100:61216126.
  • Domenech, P., M. B. Reed, and C. E. Barry. 2005. Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance. Infect. Immun. 73:34923501.
  • Frunzke, J., V. Engels, S. Hasenbein, C. Gatgens, and M. Bott. 2008. Co-ordinated regulation of gluconate catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2. Mol. Microbiol. 67:305322.
  • Funke, G., A. von Graevenitz, J. E., III Clarridge, and K. A. Bernard. 1997. Clinical microbiology of coryneform bacteria. Clin. Microbiol. Rev. 10:125159.
  • Grzegorzewicz, A. E., H. Pham, V. A. Gundi, M. S. Scherman, E. J. North, T. Hess, et al. 2012. Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane. Nat. Chem. Biol. 8:334341.
  • Hadfield, T. L., P. McEvoy, Y. Polotsky, V. A. Tzinserling, and A. A. Yakovlev. 2000. The pathology of diphtheria. J. Infect. Dis. 181(Suppl. 1):S116S120.
  • Jackson, M., M. R. McNeil, and P. J. Brennan. 2013. Progress in targeting cell envelope biogenesis in Mycobacterium tuberculosis. Future Microbiol. 8:855875.
  • Jain, M., and J. S. Cox. 2005. Interaction between polyketide synthase and transporter suggests coupled synthesis and export of virulence lipid in M. tuberculosis. PLoS Pathog. 1:e2.
  • Jain, M., E. D. Chow, and J. S. Cox. 2008. The MmpL protein family. Pp. 201210 in M. Daffe and J.-M. Reyrat, eds. The mycobacterial cell envelope. ASM Press, Washington, DC.
  • Kacem, R., C. De Sousa-D'Auria, M. Tropis, M. Chami, P. Gounon, G. Leblon, et al. 2004. Importance of mycoloyltransferases on the physiology of Corynebacterium glutamicum. Microbiology 150:7384.
  • Kaur, D., M. E. Guerin, H. Škovierová, P. J. Brennan, and M. Jackson. 2009. Chapter 2 Biogenesis of the Cell Wall and Other Glycoconjugates of Mycobacterium tuberculosis. Adv Appl Microbiol. 69:2378.
  • Louw, G. E., R. M. Warren, N. C. Gey van Pittius, C. R. McEvoy, P. D. Van Helden, and T. C. Victor. 2009. A balancing act: efflux/influx in mycobacterial drug resistance. Antimicrob. Agents Chemother. 53:31813189.
  • Murakami, S., R. Nakashima, E. Yamashita, and A. Yamaguchi. 2002. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419:587593.
  • Nikaido, H. 2011. Structure and mechanism of RND-type multidrug efflux pumps. Adv. Enzymol. Relat. Areas Mol. Biol. 77:160.
  • Nishino, K., and A. Yamaguchi. 2001. Analysis of a complete library of putative drug transporter genes in Escherichia coli. J. Bacteriol. 183:58035812.
  • Pasca, M. R., P. Guglierame, E. De Rossi, F. Zara, and G. Riccardi. 2005. mmpL7 gene of Mycobacterium tuberculosis is responsible for isoniazid efflux in Mycobacterium smegmatis. Antimicrob. Agents Chemother. 49:47754777.
  • Portevin, D., C. de Sousa-D'Auria, C. Houssin, C. Grimaldi, M. Chami, M. Daffé, et al. 2004. A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. Proc. Natl. Acad. Sci. USA 101:314319.
  • Puech, V., M. Chami, A. Lemassu, M. A. Laneelle, B. Schiffler, P. Gounon, et al. 2001. Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology 147:13651382.
  • Radmacher, E., L. J. Alderwick, G. S. Besra, A. K. Brown, K. J. C. Gibson, H. Sahm, et al. 2005. Two functional FAS-I type fatty acid synthases in Corynebacterium glutamicum. Microbiology 151:24212427.
  • van der Rest, M. E., C. Lange, and D. Molenaar. 1999. A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl. Microbiol. Biotechnol. 52:541545.
  • Sacksteder, K. A., M. Protopopova, C. E. Barry, K. Andries, and C. A. Nacy. 2012. Discovery and development of SQ109: a new antitubercular drug with a novel mechanism of action. Future Microbiol. 7:823837.
  • Sartain, M. J., D. L. Dick, C. D. Rithner, D. C. Crick, and J. T. Belisle. 2011. Lipidomic analyses of Mycobacterium tuberculosis based on accurate mass measurements and the novel “Mtb LipidDB”. J. Lipid Res. 52:861872.
  • Schwarzer, A., and A. Puhler. 1991. Manipulation of Corynebacterium glutamicum by gene disruption and replacement. Biotechnology (N Y) 9:8487.
  • Seeliger, J. C., C. M. Holsclaw, M. W. Schelle, Z. Botyanszki, S. A. Gilmore, S. E. Tully, et al. 2012. Elucidation and chemical modulation of sulfolipid-1 biosynthesis in Mycobacterium tuberculosis. J. Biol. Chem. 287:79908000.
  • Sondén, B., D. Kocíncová, C. Deshayes, D. Euphrasie, L. Rhayat, F. Laval, et al. 2005. Gap, a mycobacterial specific integral membrane protein, is required for glycolipid transport to the cell surface. Mol. Microbiol. 58:426440.
  • Sulavik, M. C., C. Houseweart, C. Cramer, N. Jiwani, N. Murgolo, J. Greene, et al. 2001. Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob. Agents Chemother. 45:11261136.
  • Tahlan, K., R. Wilson, D. B. Kastrinsky, K. Arora, V. Nair, E. Fischer, et al. 2012. SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 56:17971809.
  • Tikhonova, E. B., Q. Wang, and H. I. Zgurskaya. 2002. Chimeric analysis of the multicomponent multidrug efflux transporters from gram-negative bacteria. J. Bacteriol. 184:64996507.
  • Tropis, M., X. Meniche, A. Wolf, H. Gebhardt, S. Strelkov, M. Chami, et al. 2005. The crucial role of trehalose and structurally related oligosaccharides in the biosynthesis and transfer of mycolic acids in corynebacterineae. J. Biol. Chem. 280:2657326585.
  • Tseng, T. T., K. S. Gratwick, J. Kollman, D. Park, D. H. Nies, A. Goffeau, et al. 1999. The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J. Mol. Microbiol. Biotechnol. 1:107125.
  • Varela, C., D. Rittmann, A. Singh, K. Krumbach, K. Bhatt, L. Eggeling, et al. 2012. MmpL genes are associated with mycolic acid metabolism in mycobacteria and corynebacteria. Chem. Biol. 19:498506.
  • Ventura, M., C. Canchaya, A. Tauch, G. Chandra, G. F. Fitzgerald, K. F. Chater, et al. 2007. Genomics of actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol. Mol. Biol. Rev. 71:495548.
  • Wells, R. M., C. M. Jones, Z. Xi, A. Speer, O. Danilchanka, K. S. Doornbos, et al. 2013. Discovery of a siderophore export system essential for virulence of Mycobacterium tuberculosis. PLoS Pathog. 9:e1003120.
  • Zuber, B., M. Chami, C. Houssin, J. Dubochet, G. Griffiths, and M. Daffé. 2008. Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. J. Bacteriol. 190:56725680.