SEARCH

SEARCH BY CITATION

References

  • Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403410.
  • Bartoszewicz, M., D. K. Bideshi, A. Kraszewska, E. Modzelewska, and I. Święcicka. 2009. Natural isolates of Bacillus thuringiensis display genetic and psychrotrophic properties characteristic of Bacillus weihenstephanensis. J. Appl. Microbiol. 106:19671975.
  • Bell, R. A., C. D. Owens, M. Shapiro, and J. G. R. Tardif. 1981. Development of mass rearing technology. Pp. 599633 in C. C. Doane and M. L. McManus, eds. The gypsy moth: research toward integrated pest management. U.S. Department of Agriculture Technical Bulletin 1584, Washington.
  • Blackburn, M. B., P. A. W. Martin, D. Kuhar, R. R. Farrar, and D. E. Gundersen-Rindal. 2011. The occurrence of Photorhabdus-like toxin complexes in Bacillus thuringiensis. PLoS One 6: e18122.
  • Blackburn, M. B., P. A. W. Martin, D. Kuhar, R. R. Farrar, and D. E. Gundersen-Rindal. 2013. Phylogenetic distribution of phenotypic traits in Bacillus thuringiensis determined by multilocus sequence analysis. PLoS One 8: e66061.
  • Contzen, M., M. Hailer and J. Rau. 2014. Isolation of Bacillus cytotoxis from various commercial potato products. Int. J. Food Microbiol 174:1922.
  • Didelot, X., M. Barker, D. Falush, and F. G. Priest. 2009. Evolution of pathogenicity in the Bacillus cereus group. Syst. Appl. Microbiol. 32:8190.
  • Drewnowska, J. M., and I. Święcicka. 2013. Eco-genetic structure of Bacillus cereus sensu lato populations from different environments in northeastern Poland. PLoS One 8: e80175.
  • Guinebretière, M. H., F. L. Thompson, A. Sorokin, P. Normand, P. Dawyndt, M. Ehling-Schulz, et al. 2008. Ecological diversification in the Bacillus cereus group. Environ. Microbiol. 10:851865.
  • Guinebretière, M. H., S. Auger, N. Galleron, M. Contzen, B. De Sarrau, M. L. De Buyser, et al. 2013. Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the Bacillus cereus group occasionally associated with food poisoning. Int. J. Syst. Bacteriol. 63:3140.
  • Helgason, E., N. J. Tourasse, R. Meisal, D. A. Caugant, and A. B. Kolstø. 2004. Multilocus sequence typing scheme for bacteria of the Bacillus cereus group. Appl. Environ. Microbiol. 70:191201.
  • Jolley, K. A., M. S. Chan, and M. C. J. Maiden. 2004. mlstdbNet – distributed multi-locus sequence typing (MLST) databases. BMC Bioinf. 5:86.
  • Lechner, S., R. Mayr, K. P. Francis, B. M. Prüß, T. Kaplan, E. Wießner-Gunkel, et al. 1998. Bacillus weihenstephanensis sp. nov. Is a new psychrotolerant species of the Bacillus cereus group. Int. J. Syst. Bacteriol. 48:13731382.
  • Martin, P. A. W. 2004. A freeze-dried diet to test pathogens of Colorado potato beetle. Biol. Control 29:109114.
  • Priest, F. G., M. Barker, L. W. Baillie, E. C. Holmes, and M. C. Maiden. 2004. Population structure and evolution of the Bacillus cereus group. J. Bacteriol. 186:79597970.
  • Sorokin, A., B. Candelon, K. Guilloux, N. Galleron, N. Wackerow-Kouzova, S. D. Ehrlich, et al. 2006. Multiple-locus sequence typing analysis of Bacillus cereus and Bacillus thuringiensis reveals separate clustering and a distinct population structure of psychrotrophic strains. Appl. Environ. Microbiol. 72:15691578.
  • Soufiane, B., and J. C. Côté. 2010. Bacillus thuringiensis serovars bolivia, vazensis and navarrensis meet the description of Bacillus weihenstephanensis. Curr. Microbiol. 60:343349.
  • von Stetten, F., R. Mayr, and S. Scherer. 1999. Climatic influence on mesophilic Bacillus cereus and psychrotolerant Bacillus weihenstephanensis populations in tropical, temperate and alpine soil. Environ. Microbiol. 1:503515.
  • Święcicka, I., M. Bartoszewicz, D. Kasulyte-Creasey, J. M. Drewnowska, E. Murawska, A. Yernazarova, et al. 2013. Diversity of thermal ecotypes and potential pathotypes of Bacillus thuringiensis soil isolates. FEMS Microbiol. Ecol. 85:262272.
  • Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:27312739.
  • Thorsen, L., B. M. Hansen, K. F. Nielsen, N. B. Hendriksen, R. K. Phipps, and B. B. Budde. 2006. Characterization of emetic Bacillus weihenstephanensis, a new cereulide-producing bacterium. Appl. Environ. Microbiol. 72:51185121.
  • Tourasse, N. J., O. A. Okstad, and A. B. Kolstø. 2010. HyperCAT: an extension of the SuperCAT database for global multi-scheme and multi-datatype phylogenetic analysis of the Bacillus cereus group population. Database 2010: baq017.
  • Tourasse, N. J., E. Helgason, A. Klevan, P. Sylvestre, M. Moya, M. Haustant, et al. 2011. Extended and global phylogenetic view of the Bacillus cereus group population by combination of MLST, AFLP, and MLEE genotyping data. Food Microbiol. 28:236244.
  • Travers, R. S., P. A. W. Martin, and C. F. Reichelderfer. 1987. Selective process for efficient isolation of soil Bacillus spp. Appl. Environ. Microbiol. 53:12631266.
  • Xu, D., and J. C. Côté. 2008. Sequence diversity of Bacillus thuringiensis flagellin (H antigen) protein at the intra-H serotype level. Appl. Environ. Microbiol. 74:55245532.