SEARCH

SEARCH BY CITATION

References

  • Altschul, S. F., W. Gish, W. Miller, E. W. Meyers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403410.
  • Altschul, S. F., T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:338933402.
  • Anand, S., M. V. R. Prasad, G. Yadav, N. Kumar, J. Shehara, M. Z. Ansari, et al. 2010. SBSPKS: structure based sequence analysis of polyketide synthases. Nucleic Acids Res. 38:W487W496.
  • Bachmann, B. O., and J. Ravel. 2009. In silico prediction of microbial secondary metabolic pathways from DNA sequence data. Methods Enzymol. 458:181217.
  • Bailey, L. 1963. Pathogenicity for honeybee larvae of microorganisms associated with European Foulbrood. J. Insect Pathol. 5:198205.
  • Bode, H. B. 2009. Entomopathogenic bacteria as a source of secondary metabolites. Curr. Opin. Chem. Biol. 13:224230.
  • Broderick, N. A., R. M. Goodman, K. F. Raffa, and J. Handelsman. 2000. Synergy between zwittermicin A and Bacillus thuringiensis subsp. kurstaki against gypsy moth (Lepidoptera: Lymantriidae). Environ. Entomol. 29:101107.
  • Cuevas-Ramosa, G., C. R. Petita, I. Marcqa, M. Bourya, E. Oswalda, and J.-P. Nougayrèdea. 2010. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc. Natl. Acad. Sci. USA 107:1153711542.
  • Dingman, D. W., and D. P. Stahly. 1983. Medium promoting sporulation of Bacillus larvae and metabolism of medium components. Appl. Environ. Microbiol. 46:860869.
  • Djukic, M., E. Brzuszkiewicz, A. Fünfhaus, J. Voss, K. Gollnow, L. Poppinga, et al. 2014. How to kill the honey bee larva: genomic potential and virulence mechanisms of Paenibacillus larvae. PLoS One 9:e90914.
  • Finking, R., and M. A. Marahiel. 2004. Biosynthesis of nonribosomal peptides. Ann. Rev. Microbiol. 58:453488.
  • Fünfhaus, A., and E. Genersch. 2012. Proteome analysis of Paenibacillus larvae reveals the existence of a putative S-layer protein. Environ. Microbiol. Rep. 4:194202.
  • Fünfhaus, A., A. Ashiralieva, R. Borriss, and E. Genersch. 2009. Use of suppression subtractive hybridization to identify genetic differences between differentially virulent genotypes of Paenibacillus larvae, the etiological agent of American Foulbrood of honeybees. Environ. Microbiol. Rep. 1:240250.
  • Fünfhaus, A., L. Poppinga, and E. Genersch. 2013. Identification and characterization of two novel toxins expressed by the lethal honey bee pathogen Paenibacillus larvae, the causative agent of American foulbrood. Environ. Microbiol. 15:29512965.
  • Garcia-Gonzalez, E., and E. Genersch. 2013. Honey bee larval peritrophic matrix degradation during infection with Paenibacillus larvae, the aetiological agent of American foulbrood of honey bees, is a key step in pathogenesis. Environ. Microbiol. 15:28942901.
  • Garcia-Gonzalez, E., S. Müller, P. Ensle, R. D. Süssmuth, and E. Genersch. 2014. Elucidation of sevadicin, a novel nonribosomal peptide secondary metabolite produced by the honey bee pathogenic bacterium Paenibacillus larvae. Environ. Microbiol. 16:12971309.
  • Genersch, E., and C. Otten. 2003. The use of repetitive element PCR fingerprinting (rep-PCR) for genetic subtyping of German field isolates of Paenibacillus larvae subsp. larvae. Apidologie 34:195206.
  • Genersch, E., A. Ashiralieva, and I. Fries. 2005. Strain- and genotype-specific differences in virulence of Paenibacillus larvae subsp. larvae, the causative agent of American foulbrood disease in honey bees. Appl. Environ. Microbiol. 71:75517555.
  • Genersch, E., E. Forsgren, J. Pentikäinen, A. Ashiralieva, S. Rauch, J. Kilwinski, et al. 2006. Reclassification of Paenibacillus larvae subsp. pulvifaciens and Paenibacillus larvae subsp. larvae as Paenibacillus larvae without subspecies differentiation. Int. J. Syst. Evol. Microbiol. 56:501511.
  • Gilliam, M. 1997. Identification and roles of non-pathogenic microflora associated with honey bees. FEMS Microbiol. Lett. 155:110.
  • Gilliam, M., and D. B. Prest. 1987. Microbiology of feces of the larval honey bee, Apis mellifera. J. Invertebr. Pathol. 49:7075.
  • Gilliam, M., L. J. Wickerham, H. L. Morton, and R. D. Martin. 1974. Yeasts isolated from honey bees, Apis mellifera, fed 2,4-D and antibiotics. J. Invertebr. Pathol. 24:349356.
  • Hill, A. M. 2006. The biosynthesis, molecular genetics and enzymology of the polyketide-derived metabolites. Nat. Prod. Rep. 23:256320.
  • Holst, E. C. 1945. An antibiotic from a bee pathogen. Science 102:593594.
  • Homburg, S., E. Oswald, J. Hacker, and U. Dobrindt. 2007. Expression analysis of the colibactin gene cluster coding for a novel polyketide in Escherichia coli. FEMS Microbiol. Lett. 275:255262.
  • Kilwinski, J., M. Peters, A. Ashiralieva, and E. Genersch. 2004. Proposal to reclassify Paenibacillus larvae subsp. pulvifaciens DSM 3615 (ATCC 49843) as Paenibacillus larvae subsp. larvae. Results of a comparative biochemical and genetic study. Vet. Microbiol. 104:3142.
  • Li, H., T. Tanikawa, Y. Sato, Y. Nakagawa, and T. Matsuyama. 2005. Serratia marcescens gene required for surfactant serrawettin W1 production encodes putative aminolipid synthetase belonging to nonribosomal peptide synthetase family. Microbiol. Immunol. 49:303310.
  • Murray, K. D., and K. A. Aronstein. 2008. Transformation of the Gram-positive honey bee pathogen, Paenibacillus larvae, by electroporation. J. Microbiol. Methods 75:325328.
  • Neuendorf, S., K. Hedtke, G. Tangen, and E. Genersch. 2004. Biochemical characterization of different genotypes of Paenibacillus larvae subsp. larvae, a honey bee bacterial pathogen. Microbiology 150:23812390.
  • Nougayrede, J. P., S. Homburg, F. Taieb, M. Boury, E. Brzuszkiewicz, G. Gottschalk, et al. 2006. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313:848851.
  • Poppinga, L., and E. Genersch. 2012. Heterologous expression of green fluorescent protein in Paenibacillus larvae, the causative agent of American Foulbrood of honey bees. J. Appl. Microbiol. 112:430435.
  • Poppinga, L., B. Janesch, A. Fünfhaus, G. Sekot, E. Garcia-Gonzalez, G. Hertlein, et al. 2012. Identification and functional analysis of the S-layer protein SplA of Paenibacillus larvae, the causative agent of American Foulbrood of honey bees. PLoS Pathog. 8:e1002716.
  • Rauch, S., A. Ashiralieva, K. Hedtke, and E. Genersch. 2009. Negative correlation between individual-insect-level virulence and colony-level virulence of Paenibacillus larvae, the etiological agent of American foulbrood of honeybees. Appl. Environ. Microbiol. 75:33443347.
  • Rausch, C., T. Weber, O. Kohlbacher, W. Wohlleben, and D. H. Huson. 2005. Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res. 33:57995808.
  • Reimer, D., E. Luxenburger, A. O. Brachmann, and H. B. Bode. 2009. A new type of pyrrolidine biosynthesis is involved in the late steps of xenocoumacin production in Xenorhabdus nematophila. ChemBioChem 10:19972001.
  • Reimer, D., K. M. Pos, M. Thines, P. Grün, and H. B. Bode. 2011. A natural prodrug activation mechanism in nonribosomal peptide synthesis. Nat. Chem. Biol. 7:888890.
  • Röttig, M., M. H. Medema, K. Blin, T. Weber, C. Rausch, and O. Kohlbacher. 2011. NRPSpredictor2 – a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res. 39:W362W367.
  • Schild, H.-A., S. W. Fuchs, H. B. Bode, and B. Grünewald. 2014. Low-molecular-weight metabolites secreted by Paenibacillus larvae as potential virulence factors of American Foulbrood. Appl. Environ. Microbiol. 80:24842492.
  • Snowdon, J. A., and D. O. Cliver. 1996. Microorganisms in honey. Int. J. Food Microbiol. 31:126.
  • Vallet-Gely, I., O. Opota, A. Boniface, A. Novikov, and B. Lemaitre. 2010. A secondary metabolite acting as a signalling molecule controls Pseudomonas entomophila virulence. Cell. Microbiol. 12:16661679.
  • Yoder, J. A., A. J. Jajack, A. E. Rosselot, T. J. Smith, M. C. Yerke, and D. Sammataro. 2013. Fungicide contamination reduces beneficial fungi in bee bread based on an area-wide field study in honey bee, Apis mellifera, colonies. J. Toxicol. Environ. Health A 76:587600.
  • Yue, D., M. Nordhoff, L. H. Wieler, and E. Genersch. 2008. Fluorescence in situ-hybridization (FISH) analysis of the interactions between honeybee larvae and Paenibacillus larvae, the causative agent of American foulbrood of honeybees (Apis mellifera). Environ. Microbiol. 10:16121620.
  • Zarschler, K., B. Janesch, S. Zayni, C. Schäffer, and P. Messner. 2009. Construction of a gene knockout system for application in Paenibacillus alvei CCM 2051T, exemplified by the S-layer glycan biosynthesis initiation enzyme WsfP. Appl. Environ. Microbiol. 75:30773085.
  • Zarschler, K., B. Janesch, M. Pabst, F. Altmann, P. Messner, and C. Schäffer. 2010. Protein tyrosine O-glycosylation – A rather unexplored prokaryotic glycosylation system. Glycobiology 20:787798.