SEARCH

SEARCH BY CITATION

References

  • Agbogbo, F. K, and G. Coward-Kelly. 2008. Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnol. Lett. 30:15151524.
  • Agbogbo, F. K., and K. S. Wenger. 2007. Production of ethanol from corn stover hemicellulose hydrolyzate using Pichia stipitis. J. Ind. Microbiol. Biotechnol. 34:723727.
  • Agbogbo, F.K.,G. Coward-Kelly,M. Torry-Smith, and K. S. Wenger. 2006. Fermentation of glucose/xylose mixtures using Pichia stipitis. Proc. Biochem. 41:23332336.
  • Agbogbo, F. K.,G. Coward-Kelly,M. Torry-Smith,K. Wenger, and T. W. Jeffries. 2007. The effect of initial cell concentration on xylose fermentation by Pichia stipitis. Appl. Biochem. Biotechnol. 137:653662.
  • Agbogbo, F. K.,F. D. Haagensen,D. Milam, and K. S. Wenger. 2008. Fermentation of acid-pretreated corn stover to ethanol without detoxification using Pichia stipitis. Appl. Biochem. Biotechnol. 145:5358.
  • Amore, R.,P. Kötter,C. Küster,M. Ciriacy, and C. P. Hollenberg. 1991. Cloning and expression in Saccharomyces cerevisiae of the NAD(P)H-dependent xylose reductase-encoding gene (XYL1) from the xylose-assimilating yeast Pichia stipitis. Gene 109:8997.
  • Bajwa, P. K.,T. Shireen,F. D'Aoust,D. Pinel,V. J. J. Martin,J. T. Trevors, and H. Lee. 2009. Mutants of the pentose-fermenting yeast Pichia stipitis with improved tolerance to inhibitors in hardwood spent sulfite liquor. Biotechnol. Bioeng. 104:892900.
  • Chu, B. C., and H. Lee. 2007. Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol. Adv. 25:425441.
  • Delgenes, J. P.,R. Moletta, and J. M. Navarro. 1986. The effect of aeration on D-xylose fermentation by Pachysolen tannophilus, Pichia stipitis, Kluyveromyces marxianus and Candida shehatae. Biotechnol. Lett. 8:897900.
  • Dellweg, H.,M. Rizzi,H. Methner, and D. Debus. 1984. Xylose fermentation by yeasts. 3. Comparison of Pachysolen tannophilus and Pichia stipitis. Biotechnol. Lett. 6:395400.
  • Díaz, M. J.,E. Ruiz,I. Romero,C. Cara,M. Moya, and E. Castro. 2009. Inhibition of Pichia stipitis fermentation of hydrolysates from olive tree cuttings. World J. Microbiol. Biotechnol. 25:891899.
  • Ferreira, A. D.,S. I. Mussatto,R. M. Cadete,C. A. Rosa, and S. S. Silva. 2011. Ethanol production by a new pentose-fermenting yeast strain, Scheffersomyces stipitis UFMG-IMH 43.2, isolated from the Brazilian forest. Yeast 28:547554.
  • Fiaux, J.,Z. P. Çakar,M. Sonderegger,K. Wüthrich,T. Szyperski, and U. Sauer. 2003. Metabolic-flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Eukaryot. Cell. 2:170180.
  • Fu, N.,P. Peiris,J. Markham, and J. Bavor. 2009. A novel co-culture process with Zymomonas mobilis and Pichia stipitis for efficient ethanol production on glucose/xylose mixtures. Enzyme Microb. Technol. 45:210217.
  • Gírio, F. M,C. Fonseca,F. Carvalheiro,L. C. Duarte,S. Marques, and R. Bogel-Łukasik. 2010. Hemicelluloses for fuel ethanol: a review. Biores. Technol. 101:47754800.
  • Hahn-Hägerdal, B.,M. Galbe,M. F. Gorwa-Grauslund, G. Lidén, and G. Zacchi. 2006. Bio-ethanol - the fuel of tomorrow from the residues of today. Trends Biotechnol. 24:549556.
  • Hahn-Hägerdal, B.,K. Karhumaa,M. Jeppsson, and M. F. Gorwa-Grauslund. 2007a. Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Adv. Biochem. Eng. Biotechnol. 108:147177.
  • Hahn-Hägerdal, B.,K. Karhumaa,C. Fonseca,I. Spencer-Martins, and M. F. Gorwa-Grauslund. 2007b. Towards industrial pentose-fermenting yeast strains. Appl. Microbiol. Biotechnol. 74:937953.
  • Hallborn, J.,M. Walfridsson,U. Airaksinen,H. Ojamo,B. Hahn-Hägerdal,M. Penttilä, and S. Keränen. 1991. Xylitol production by recombinant Saccharomyces cerevisiae. Biotechnology 9:10901095.
  • Jeffries, T. W. 2006. Engineering yeasts for xylose metabolism. Curr. Opin. Biotechnol. 17:320326.
  • Jeffries, T. W., and J. R. Van Vleet. 2009. Pichia stipitis genomics, transcriptomics, and gene clusters. FEMS Yeast Res. 9:793807.
  • Jeffries, T. W.,I. V. Grigroriev,J. Grimwood,J. M. Laplaza,A. Aerts,A. Salamov,J. Schmutz,E. Lindquist,P. Dehal,H. Shapiro,Y. S. Jin,V. Passoth, and P. M. Richardson. 2007. Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat. Biotechnol. 25:319326.
  • Krahulec, S.,M. Klimacek, and B. Nidetzky. 2009. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae. Biotechnol. J. 4:684694.
  • Krahulec, S.,B. Petschacher,M. Wallner,K. Longus,M. Klimacek, and B. Nidetzky. 2010. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Microb. Cell Fact. 9:16.
  • Lange, H.C., and J. J. Heijnen. 2001. Statistical reconciliation of the elemental and molecular biomass composition of Saccharomyces cerevisiae. Biotechnol. Bioeng. 75:334344.
  • Lee, J.,R. C. Rodrigues, and T. W. Jeffries. 2009. Simultaneous saccharification and ethanol fermentation of oxalic acid pretreated corncob assessed with response surface methodology. Bioresour. Technol. 100:63076311.
  • Lee, J. W.,J. Y. Zhu,D. Scordia, and T. W. Jeffries. 2011a. Evaluation of ethanol production from corncob using Scheffersomyces (Pichia) stipitis CBS 6054 by volumetric scale-up. Appl. Biochem. Biotechnol. 165:814822.
  • Lee, J.W.,C. J. Houtman,H. Y. Kim,I. G. Choi, and T. W. Jeffries. 2011b. Scale-up study of oxalic acid pretreatment of agricultural lignocellulosic biomass for the production of bioethanol. Bioresour. Technol. 102:74517456
  • Li, Y.,J. Y. Park,R. Shiroma, and K. Tokuyasu. 2011. Bioethanol production from rice straw by a sequential use of Saccharomyces cerevisiae and Pichia stipitis with heat inactivation of Saccharomyces cerevisiae cells prior to xylose fermentation. J. Biosci. Bioeng. 6:682686.
  • Matsushika, A.,H. Inoue,T. Kodaki, and S. Sawayama. 2009. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl. Microbiol. Biotechnol. 84:3753.
  • Petschacher, B., and B. Nidetzky. 2008. Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb. Cell Fact. 7:9.
  • Sanchez, S.,V. Bravo,E. Castro,A. J. Moya, and F. Camacho. 2002. The fermentation of mixtures of D-glucose and D-xylose by Candida shehatae, Pichia stipitis or Pachysolen tannophilus to produce ethanol. J. Chem. Technol. Biotechnol. 77:641648.
  • Silva, J. P.,S. I. Mussatto, and I. C. Roberto. 2010. The influence of initial xylose concentration, agitation, and aeration on ethanol production by Pichia stipitis from rice straw hemicellulosic hydrolysate. Appl. Biochem. Biotechnol. 162:13061315.
  • Skoog, K., and B. Hahn-Hägerdal. 1990. Effect of oxygenation on xylose fermentation by Pichia stipitis. Appl. Environ. Microbiol. 56:33893394.