SEARCH

SEARCH BY CITATION

References

  • Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403410.
  • Beck, C. F., and R. A. J. Warren. 1988. Divergent promoters, a common form of gene organisation. Microbiol. Rev. 52:318326.
  • Brewer, J. M., L. Ljungdahl, T. Spencer, and S. H. Neece. 1970. Physical properties of formyltetrahydrofolate synthetase from Clostridium thermoaceticum. J. Biol. Chem. 245:47984803.
  • Bruant, G., M. J. Lévesque, C. Peter, S. R. Guiot, and L. Masson. 2010. Genomic analysis of carbon monoxide utilization and butanol production by Clostridium carboxidivorans strain P7. PLoS ONE 5:e13033.
  • Chauhan, A., and A. Ogram. 2006. Fatty acid-oxidizing consortia along a nutrient gradient in the Florida Everglades. Appl. Environ. Microbiol. 72:24002406.
  • Cord-Ruwisch, R., H.-J. Steitz, and R. Conrad. 1988. The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch. Microbiol. 149:350357.
  • de Crécy-Lagard, V., B. El Yacoubi, R. D. de la Garza, A. Noiriel, and A. D. Hanson. 2007. Comparative genomics of bacterial and plant folate synthesis and salvage: predictions and validations. BMC Genomics 8:245.
  • Drummond, A. J., B. Ashton, S. Buxton, M. Cheung, A. Cooper, C. Duran, et al. 2011. Research software for biologists, not computer scientist. Available from: geneious.com. Accessed 7 November 2012.
  • Edgar, R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:17921797.
  • Guindon, S., and O. Gascuel. 2003. A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52:696704.
  • Hattori, S., Y. Kamagata, S. Hanada, and H. Shoun. 2000. Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int. J. Syst. Evol. Microbiol. 50:16011609.
  • Hattori, S., A. S. Galushko, Y. Kamagata, and B. Schink. 2005. Operation of the CO dehydrogenase/acetyl coenzyme A pathway in both acetate oxidation and acetate formation by the syntrophically acetate-oxidizing bacterium Thermacetogenium phaeum. J. Bacteriol. 187:34713476.
  • Hori, T., D. Sasaki, S. Haruta, T. Shigematsu, Y. Ueno, M. Ishii, et al. 2011. Detection of active, potentially acetate-oxidizing syntrophs in an anaerobic digester by flux measurement and formyltetrahydrofolate synthetase (FTHFS) expression profiling. Microbiology 157:19801989.
  • Jernberg, C., and J. K. Jansson. 2002. Impact of 4-chlorophenolcontamination and/or inoculation with the 4-chlorophenoldegradingstrain, Arthrobacter chlorophenolicus A6L, on soil bacterial community structure. FEMS Microbiol. Ecol. 42:387397.
  • Kane, M. D., and J. A. Breznak. 1991. Acetonema longum gen.no.sp.nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis. Arch. Microbiol. 156:9198.
  • Karakashev, D., D. J. Batstone, and I. Angelidaki. 2005. Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl. Environ. Microbiol. 71:331338.
  • Karakashev, D., D. J. Batstone, E. Trably, and I. Angelidaki. 2006. Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae. Appl. Environ. Microbiol. 72:51385141.
  • Kato, S., and K. Watanabe. 2010. Ecological and evolutionary interactions in syntrophic methanogenic consortia. Microbes Environ. 25:145151.
  • Kerby, R. L., P. W. Ludden, and G. P. Roberts. 1997. In vivo nickel insertion into the carbon monoxide dehydrogenase of Rhodospirillum rubrum: molecular and physiological characterization of CooCTJ. J. Bacteriol. 179:22592266.
  • Köpke, M., C. Held, S. Hujer, H. Liesegang, A. Wiezer, A. Wollherr, et al. 2010. Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc. Natl. Acad. Sci. USA 107:1308713092.
  • Leaphart, A. B., and C. R. Lovell. 2001. Recovery and analysis of formyltetrahydrofolate synthetase gene sequences from natural populations of acetogenic bacteria. Appl. Environ. Microbiol. 67:13921395.
  • Leaphart, A. B., M. J. Friez, and C. R. Lovell. 2003. Formyltetrahydrofolate synthetase sequences from salt marsh plant roots reveal a diversity of acetogenic bacteria and other bacterial functional groups. Appl. Environ. Microbiol. 69:693696.
  • Lee, M. J., and S. H. Zinder. 1988. Isolation and characterization of a thermophilic bacterium which oxidises acetate in syntrophic association with a methanogen and which grows acetogenically on H2–CO2. Appl. Environ. Microbiol. 54:124129.
  • Lovell, C. R., and A. B. Leaphart. 2005. Community-level analysis: key genes of CO2-reductive acetogenesis. Methods Enzymol. 397:454469.
  • MacKenzie, R. E., and J. C. Rabinowitz. 1971. Cation-dependent reassociation of subunits of N10-formyltetrahydrofolate synthetase from Clostridium acidi-urici and Clostridium cylindrosporum. J. Biol. Chem. 246:37313736.
  • Marx, C. J., M. Laukel, J. A. Vorholt, and M. E. Lidstrom. 2003. Purification of the formate-tetrahydrofolate ligase from Methylobacterium extorquens AM1 and demonstration of its requirement for methylotrophic growth. J. Bacteriol. 185:71697175.
  • Matsui, H., N. Kojima, and K. Tajima. 2008. Diversity of the formyltetrahydrofolate synthetase gene (fhs), a key enzyme for reductive acetogenesis, in the bovine rumen. Biosci. Biotechnol. Biochem. 72:32733276.
  • Misoph, M., and H. L. Drake. 1996. Effect of CO2 on the fermentation capacities of the acetogen Peptostreptococcus productus U-1. J. Bacteriol. 178:31403145.
  • Nazina, T. N., N. M. Shestakova, A. A. Grigorian, E. M. Mikhaĭlova, T. P. Turova, A. B. Poltaraus, et al. 2006. Phylogenetic diversity and activity of anaerobic microorganisms of high-temperature horizons of the Dagang Oilfield (China) [Russian]. Mikrobiologiia 75:7081.
  • Nüsslein, B., K. J. Chin, W. Eckert, and R. Conrad. 2001. Evidence for anaerobic syntrophic acetate oxidation during methane production in the profundal sediment of subtropical Lake Kinneret (Israel). Environ. Microbiol. 3:460470.
  • O'Brien, W. E., J. M. Brewer, and L. G. Ljungdahl. 1976. Chemical, physical and enzymatic comparison of formyltetrahydrofolate synthetase from thermo- and mesophilic Clostridia. Experientia Suppl. 26:249262.
  • Pierce, E., G. Xie, R. D. Barabote, E. Saunders, C. S. Han, J. C. Detter, et al. 2008. The complete genome sequence of Moorella thermoacetica (f Clostridium thermoaceticum). Environ. Microbiol. 10:25502573.
  • Pitluck, S., M. Yasawong, C. Munk, M. Nolan, A. Lapidus, S. Lucas, et al. 2010. Complete genome sequence of Thermosediminibacter oceani type strain (JW/IW-1228P). Stand. Genomic Sci. 3:108116.
  • Poehlein, A., S. Schmidt, A. K. Kaster, M. Goenrich, J. Vollmers, A. Thürmer, et al. 2012. An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis. PLoS ONE 7:e33439.
  • Rabinowitz, J. C. and W. E. Pricer. 1962. Formyltetrahydrofolate synthetase. I. isolation and crystallization of the enzyme. J. Biol. Chem. 237:28982902.
  • Radfar, R., A. Leaphart, J. M. Brewer, W. Minor, J. D. Odom, R. B. Dunlap, et al. 2000. Cation binding and thermostability of FTHFS monovalent cation binding sites and thermostability of N10-formyltetrahydrofolate synthetase from Moorella thermoacetica. Biochemistry 39:1448114486.
  • Roh, H., H. J. Ko, D. Kim, D. G. Choi, S. Park, S. Kim, et al. 2011. Complete genome sequence of a carbon monoxide-utilizing acetogen, Eubacterium limosum KIST612. J. Bacteriol. 193:307308.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual. Vol. 1–3. Cold Spring Harbor Laboratory Press, New York, NY.
  • Schink, B. 1997. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 61:262280.
  • Schnürer, A., and A. Nordberg. 2008. Ammonia, a selective agent for methane production by syntrophic acetate oxidation at mesophilic temperature. Water Sci. Technol. 57:735740.
  • Schnürer, A., B. Schink, and B. H. Svensson. 1996. Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. Int. J. Syst. Bacteriol. 46:11451152.
  • Schnürer, A., B. H. Svensson, and B. Schink. 1997. Enzyme activities in and energetics of acetate metabolism by the mesophilic syntrophically acetate-oxidizing anaerobe Clostridium ultunense. FEMS Microbiol. Lett. 154:331336.
  • Schnürer, A., G. Zellner, and B. H. Svensson. 1999. Mesophilic syntrophic acetate oxidation during methane formation in biogas reactors. FEMS Microbiol. Ecol. 29:249261.
  • Scott, J. M., and C. Rabinowitz. 1967. The association-dissociation of formyltetrahydrofolate synthetase and its relation to monovalent cation activation of catalytical activity. Biochem. Biophys. Res. Commun. 29:418423.
  • Singer, S. W., M. B. Hirst, and P. W. Ludden. 2006. CO-dependent H2 evolution by Rhodospirillum rubrum: role of CODH:CooF complex. Biochim. Biophys. Acta 1757:15821591.
  • Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:27312739.
  • Walker, J. E., M. Saraste, M. J. Runswick, and N. J. Gay. 1982. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1:945951.
  • Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173:697703.
  • Westerholm, M., S. Roos, and A. Schnürer. 2010. Syntrophaceticus schinkii gen. nov., sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from a mesophilic anaerobic filter. FEMS Microbiol. Lett. 309:100104.
  • Westerholm, M., B. Müller, V. Arthurson, and A. Schnürer. 2011a. Changes in the acetogenic population in a mesophilic anaerobic digester in response to increasing ammonia concentration. Microbes Environ. 26:347353.
  • Westerholm, M., S. Roosand, and A. Schnürer. 2011b. Tepidanaerobacter acetatoxydans sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from two ammonium-enriched mesophilic methanogenic processes. Syst. Appl. Microbiol. 34:260266.
  • Westerholm, M., L. Levén, and A. Schnürer 2012. Bioaugmentation of syntrophic acetate-oxidising culture in biogas reactors exposed to increasing levels of ammonia. Appl. Environ. Microbiol. 78:76197625.
  • Winter, J. U., and R. S. Wolfe. 1980. Methane formation from fructose by syntrophic associations of Acetobacterium woodii and different strains of methanogens. Arch. Microbiol. 124:7379.
  • Wu, M., Q. Ren, A. S. Durkin, S. C. Daugherty, L. M. Brinkac, R. J. Dodson, et al. 2005. Life in hot carbon monoxide: the complete genome sequence of Carboxydothermus hydrogenoformans Z-2901. PLoS Genet. 1:e65.
  • Ye, Q., Y. Roh, S. L. Carroll, B. Blair, J. Zhou, C. L. Zhang, et al. 2004. Alkaline anaerobic respiration: isolation and characterization of a novel alkaliphilic and metal-reducing bacterium. Appl. Environ. Microbiol. 70:55955602.
  • Zinder, S. H. 1984. Microbiology of anaerobic conversion of organic wastes to methane: recent developments. ASM News 50:294298.
  • Zinder, S. H., and M. Koch. 1984. Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Arch. Microbiol. 138:263272.